A\ Luca Cabibbo

V‘ Architettura
\V" T4 '\ dei Sistemi

Faxa
) Software

Orchestrazione di container
con Kubernetes

dispensa asw880 Give a man a Contamer
and you keep him busy for a day.
ottobre 2025 Teach a man Kubernetes

and you keep him busy for a lifetime.
Kelsey Hightower

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Riferimenti

o Luca Cabibbo. Architettura del Software: Strutture e Qualita.
Edizioni Efesto, 2021.
= Capitolo 40, Orchestrazione di container

o LukSa, M. Kubernetes in Action. Manning, 2018.

o Stoneman, E. Learn Kubernetes in a Month of Lunches, Manning,
2021.

o Kubernetes (version 1.34, 2025)
https://kubernetes.io/
https://kubernetes.io/docs/home/

2 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Obiettivi e argomenti

o Obiettivi
= introdurre Kubernetes
= esemplificare I'orchestrazione di container con Kubernetes

o Argomenti
= introduzione a Kubernetes
= architettura di Kubernetes
= risorse Kubernetes
= orchestrazione con Kubernetes
= Helm
= discussione

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

A - :
Y Introduzione a Kubernetes

o Kubernetes € una piattaforma open source, portabile ed
estensibile, per la gestione automatizzata di applicazioni e carichi
di lavoro a container sulla base di configurazioni dichiarative

= il nome Kubernetes (talvolta abbreviato K8S) deriva dal greco e
significa “timoniere” o “pilota”
= inizialmente sviluppato da Google (sulla base di 15 anni di

esperienza nell’eseguire carichi di lavoro su larga scala a
Google), nel 2014 & divenuto un progetto open-source

= 0ggi € uno dei sistemi di orchestrazione di container piu diffusi

= per gli obiettivi dell'orchestrazione di container e i principi
generali di funzionamento si veda il capitolo sull’'orchestrazione
di container

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

A\ :
Y Introduzione a Kubernetes

o Kubernetes € una piattaforma open source, portabile ed
estensibile, per la gestione automatizzata di applicazioni e carichi
di lavoro a container sulla base di configurazioni dichiarative

= in pratica, Kubernetes consente di definire e gestire una
piattaforma costituita da un cluster di nodi in cui eseguire una o
piu applicazioni a container

= puO essere eseguito in una varieta di ambienti — in un singolo
PC (come ambiente per lo sviluppo e I'apprendimento) oppure
come un cluster di macchine fisiche o virtuali, on premises
oppure nel cloud (come ambiente di produzione)

= nel cloud é possibile creare facilmente un cluster Kubernetes in
un gruppo di macchine virtuali — ma € ancora piu semplice
usare uno dei numerosi servizi completamente gestiti per
container basati su Kubernetes — come Google GKE (Google
Kubernetes Engine), Amazon EKS (Elastic Kubernetes Service)
oppure Microsoft AKS (Azure Kubernetes Service)

5 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) * Architettura di Kubernetes

o Descriviamo ora I'architettura di Kubernetes

developer - =
. developer ! control
> : . » node
‘n‘ workstation ; plane

= un cluster Kubernetes

= ha I'obiettivo di consentire I'esecuzione di una o piu
applicazioni a container (in genere una sola applicazione per
cluster, soprattutto nel cloud)

=« € basato su diversi componenti software — che vengono
esequiti in due tipi di macchine

6 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Cluster Kubernetes

0 Un cluster Kubernetes € composto da due tipi di macchine

= uno o piu nodi (nodi worker) — in cui vengono effettivamente
esegquiti i container delle applicazioni (chiamati pod in
Kubernetes)

= una o piu macchine per il control plane — il control plane
controlla e gestisce l'intero cluster Kubernetes

= il control plane gestisce lo stato del cluster, ma (in genere) le
sue macchine non partecipano all’effettiva esecuzione delle
applicazioni, che viene invece effettuata sui nodi worker

= gli sviluppatori possono rilasciare in un cluster Kubernetes le
proprie applicazioni a container

= in questa dispensa, usiamo il termine “sviluppatore” per
indicare, genericamente, chi si occupa di rilasciare
un’applicazione in un cluster Kubernetes

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Control plane

o Il control plane gestisce il cosiddetto Kubernetes Control Plane,
che controlla il cluster e lo fa funzionare

control plane

cloud

API server controller.
manager

scheduler controller ﬁ/‘
manager etcd

= le macchine del control plane vengono in genere replicate, per
garantire alta disponibilita e scalabilita (dell’orchestratore)

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Control plane

o |l control plane ospita i seguenti componenti software
= kube-apiserver (Kubernetes API Server)

= il front-end del Control Plane, che gestisce la comunicazione
tra i diversi componenti software di Kubernetes

= kube-scheduler

= lo scheduler, che schedula i pod delle applicazioni — ovvero,
assegna un nodo a ciascun pod che deve essere eseguito
nel cluster

= kube-controller

= il controller manager, che esegue funzioni a livello di cluster
per controllare (in senso attivo) che lo stato delle
applicazioni rilasciate corrisponda a quello desiderato (come
discusso piu avanti) — ad es., controlla i pod e i nodi

= etcd — un data store distribuito che gestisce in modo persistente
e affidabile i dati e la configurazione del cluster

9 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Control plane

o Il control plane ospita i seguenti componenti software

= cloud-controller-manager (€ presente solo se il cluster viene
eseguito nel cloud)

= gestisce la logica di controllo specifica per il cloud

= collega il cluster alle API del provider di cloud utilizzato, e
separa i componenti che interagiscono con la piattaforma di
cloud da quelli che interagiscono solo con il cluster

10 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Nodi (worker)

o | nodi (worker) eseguono i container (pod) che costituiscono le
applicazioni

control plane

APlserver || ———— | | node

/ \ | kubelet kLr:Ic?)?_
scheduler controller F/‘ oroxy
manager etcd |

container
runtime

= vengono in genere usati piu nodi (che possono anche essere
aggiunti dinamicamente al cluster), per garantire alta
disponibilita e scalabilita (delle applicazioni)

11 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Nodi (worker)

o Ogni nodo worker ospita i seguenti componenti software
= un container runtime

= per eseguire i container associati ai pod (come containerd
oppure Docker) — non € parte di Kubernetes

= kubelet

= un agente che gestisce i pod di quel nodo — € un
intermediario tra Kubernetes e il container runtime locale

= kube-proxy (Kubernetes Service Proxy)

= un proxy di rete che inoltra e bilancia il traffico di rete tra i
pod

12 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Client per gli sviluppatori

0 Inoltre, sul PC dello sviluppatore di un’applicazione a container va
utilizzato un componente software per interagire con il cluster
Kubernetes

developer workstation control plane
developer cloud
kubectl » API server controller.
tools / 7y \I;nanager
scheduler controller F/‘
manager etcd
= kubectl

= un’interfaccia dalla linea di comando (CLI) che accetta
comandi dallo sviluppatore e li inoltra (come chiamate
REST) al cluster Kubernetes

13 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Add-on
o Oltre a questi componenti software, vengono in genere utilizzati
anche degli add-on per estendere le funzionalita di base di
Kubernetes e per fornire dei servizi utili alle applicazioni a
container
= ogni cluster Kubernetes deve avere un cluster DNS, un server
DNS che sostiene la comunicazione tra i container delle
applicazioni — ad es., CoreDNS

= questo e I'unico add-on strettamente necessario

= € inoltre comune utilizzare un add-on per gestire una rete per la
comunicazione tra pod (pod network) — ad es., Project Calico

= ulteriori esempi di add-on sono una dashboard (una web Ul per
rilasciare applicazioni e gestire le risorse del cluster) oppure
strumenti per la gestione delle reti, degli ingress (discussi piu
avanti), per il monitoraggio e per il logging

14 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Add-on

o Oltre a questi componenti software, vengono in genere utilizzati
anche degli add-on per estendere le funzionalita di base di
Kubernetes e per fornire dei servizi utili alle applicazioni a
container

= gli add-on vengono eseguiti nel cluster come risorse
Kubernetes, dunque in modo analogo alle risorse delle
applicazioni

= alcuni add-on vengono eseguiti nel control plane (ad es.,
CoreDNS), ma altri add-on vengono invece eseguiti nei nodi
worker

= complessivamente, le funzionalita di orchestrazione vengono
svolte dai componenti software di base di Kubernetes insieme
agli add-on utilizzati

15 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Reti e indirizzi di rete

o Alcune cose utili da sapere sulla gestione delle reti e degli indirizzi
IP in Kubernetes

= ogni macchina (fisica o virtuale) del cluster ha un proprio
indirizzo IP “esterno” nella rete in cui e collocato — ad es.,
10.11.1.71

= all'interno del cluster viene inoltre definita una rete privata (pod
network) per la comunicazione tra pod — ad es., la rete
192.168.0.0/16 — a ciascun pod viene assegnato un indirizzo IP
in questa rete

= all'interno del cluster viene definita anche un’altra rete privata
(service network) per i servizi (discussi piu avanti), per
semplificare la comunicazione tra i pod — ad es., la rete
10.96.0.0/12

= tutti i pod rilasciati nel cluster vengono configurati per usare
automaticamente il cluster DNS

16 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) L’ambiente kube-cluster

0 Nel repository GitHub del corso € disponibile un ambiente kube-
cluster per Kubernetes

= una VM per il control plane — kube-1 (10.11.1.71 0 10.11.2.71)

= due VM per i nodi worker — kube-2 (10.11.1.72 0 10.11.2.72) e
kube-3 (10.11.1.73 0 10.11.2.73)

= una VM per lo sviluppatore — kube-dev (10.11.1.79 o
10.11.2.79), con Java, Python, Docker e kubectl

= gli add-on utilizzati nel’ambiente kube-cluster sono
= CoreDNS come cluster DNS
= Calico Project per la gestione della pod network

= NGINX Ingress Controller — un ingress controller basato su
NGINX, che ascolta per HTTP sulle porte 80 (solo sui nodi
worker) e 31080 (su tutte le macchine del cluster)

17 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) L’ambiente kube-cluster

0 Nel repository GitHub del corso & disponibile un ambiente kube-
cluster per Kubernetes

= nella rete (file /etc/hosts di ogni VM) sono configurati i seguentsi
alias

« kube-cluster per le VM del cluster kube-1, kube-2 e kube-3

- con l'ingress controller che su tutte le macchine ascolta
sulla porta 31080

» kube-control-plane per le VM del control plane kube-1
» kube-node per i nodi worker kube-2 e kube-3

- con l'ingress controller che sui nodi worker ascolta sulla
porta 80

18 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

* Risorse Kubernetes
y 4

o Kubernetes definisce un certo numero di astrazioni — chiamate
risorse (APl resource oppure Kubernetes resource object) — per la
configurazione dichiarativa delle applicazioni a container

= le risorse Kubernetes piu importanti sono

= un pod incapsula un’istanza di container da eseguire nel
cluster — costituisce I'unita di deployment nell’'orchestratore

= un replica set consente di gestire automaticamente
I'esecuzione di una o piu repliche di un pod

= Uun daemon set consente di avere una replica di un pod per
ciascun nodo worker del cluster

= un service definisce un punto d’ingresso unico e stabile per
un insieme logico di pod che forniscono uno stesso servizio

= un deployment consente di gestire in modo dichiarativo il
rilascio e 'aggiornamento di un’applicazione

19 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Risorse Kubernetes

0 Ecco alcune nozioni correlate alle risorse Kubernetes

= una tipologia di risorsa rappresenta un’astrazione (una
classificazione) delle entita software gestite da Kubernetes

= ad es., il concetto di pod

= un’istanza di risorsa rappresenta un’entita software runtime
gestita dal cluster Kubernetes

= ad es., un’istanza di un pod per un certo servizio

= una specifica di risorsa (o configurazione di risorsa)
rappresenta lo stato desiderato di un gruppo di una o piu
istanze di risorse (con caratteristiche simili)

= ad es., la specifica di un pod per un certo servizio

= in questa dispensa, usiamo il termine generico “risorsa” (senza
nessuna qualificazione) quando il suo significato pud essere
dedotto dal contesto in cui compare

20 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Specifiche di risorse

o Le specifiche di risorse consentono una configurazione
dichiarativa delle applicazioni a container

= infatti consentono agli sviluppatori di descrivere lo stato
desiderato (a runtime) del cluster Kubernetes

= ciascuna specifica di risorsa descrive un “intento” richiesto
durante I'esecuzione di un’applicazione

= quando viene rilasciata una risorsa, Kubernetes inizia a
lavorare costantemente per garantire I'esistenza delle
corrispondenti istanze di risorsa

= per creare e rilasciare una risorsa, bisogna dunque fornire una
specifica della risorsa, che contiene informazioni sulla risorsa

(ad es., la sua tipologia e il suo nome) e sul suo stato
desiderato

= questo avviene mediante un approccio di tipo infrastructure-
as-code — in pratica, di solito, mediante un file YAML

21 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Esempio

o Come primo esempio, consideriamo un servizio REST hello che
ascolta al path / sulla porta 8080 e risponde con un saluto

= Si puo realizzare come una semplice applicazione Spring Boot
= ecco il relativo Dockerfile

Dockerfile per il servizio hello

FROM eclipse-temurin:21-jdk

ADD build/libs/hello.jar hello.jar

EXPOSE 8080

ENTRYPOINT ["java", "-Xmx128m", "-Xms128m", "-jar", "hello.jar"]
= 'immagine Docker ¢é stata salvata su Docker Hub come

aswroma3/hello-kube:2025-10 e come
aswroma3/hello-kube:latest

= discutiamo il rilascio in Kubernetes di un tale servizio
applicativo

22 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Pod

0 Un pod é l'unita di esecuzione di un’applicazione a container

= intuitivamente, un pod rappresenta e incapsula un’istanza di
container da eseguire nel cluster — a ogni pod sono associate
delle risorse computazionali, come un indirizzo IP unico e delle
risorse di storage

= un pod ¢ la piu semplice e piccola unita che uno sviluppatore
puo creare o rilasciare in Kubernetes

23 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Pod

0 Ecco la specifica di un pod hello-pod (file hello-pod.yaml)

apiVersion: vi
kind: Pod
metadata:
name: hello-pod
labels:
app: hello
spec:
containers:
- name: hello-container
image: aswroma3/hello-kube:latest

= nella specifica di un pod, &€ necessario far riferimento a delle
immagini Docker in_un reqistry (che deve essere accessibile da
tutti i nodi del cluster) — non & invece possibile far riferimento a
immagini nella cache Docker oppure a dei Dockerfile

= tutte le immagini usate in questa dispensa sono disponibili su
Docker Hub

24 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Kubedctl

0 Ecco alcuni comandi kubectl di uso generale

25

= kubectl create resource o kubectl create -f resource-file.yam!
= crea la risorsa specificata o le risorse del file specificato

= kubectl apply -f resource-file.yaml
= crea o aggiorna le risorse del file specificato

= kubectl delete -f resource-file.yaml
= elimina le risorse del file specificato

= kubectl get resource-type

= elenca le risorse della tipologia specificata — ad es., pods
(po), nodes (no), services (svc), ...

= kubectl describe resource-type/resource-name
= fornisce informazioni sulla risorsa specificata
= kubectl delete resource-type/resource-name
= elimina la risorsa specificata

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Kubectl e pod

0 Ecco alcuni comandi kubectl per la gestione dei pod

26

= kubectl apply -f hello-pod.yaml
= in questo caso, crea il pod hello-pod
= kubectl get pods [-o wide]

= elenca i pod rilasciati nel cluster [mostrando una descrizione
estesa]

= kubectl describe pods/hello-pod
= fornisce informazioni sul pod specificato — come I'immagine,
il container per il pod e il suo indirizzo IP
= € possibile accedere al pod mediante il suo indirizzo IP
- attenzione: per ora € possibile accedere a questo servizio
applicativo solo dalle macchine interne del cluster (ad es.,
da kube-1, ma non da kube-dev, che € esterno al cluster)
= kubectl delete pods/hello-pod
= elimina il pod specificato

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

Rilascio di un pod nel cluster

.

C o)
hello-pod.yaml
Pod

name: hello-pod

labels:

- app: hello

containers;

- image:

L O

i worker node 1 (10.11.1.71) worker node 2 (10.11.1.72) worker node 3 (10.11.1.73) E
E container runtime container runtime container runtime i
! Pod: hello-pod-abc |
! (192.168.89.21) i
i Kubernetes cluster i
27 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

Rilascio di un pod nel cluster
y P

o Il rilascio di un pod nel cluster avviene in questo modo

= uno sviluppatore richiede (tramite kubectl) il rilascio di un pod
nel cluster

= kubectl inoltra la richiesta di creazione del pod allAPI server

= APl server chiede allo scheduler di selezionare un nodo
worker in cui creare e avviare il pod

= ’API server notifica la richiesta di creazione del pod al kubelet
del nodo worker selezionato

= il kubelet del nodo selezionato chiede al container runtime
locale di creare e avviare un nuovo container per il pod

28 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

L\ . .
POd con piu container
Y 4 P

o | pod possono essere usati in due modi

= pod a singolo container — € il caso piu comune — in questo
caso, si pud pensare a un pod come a un’entita che incapsula
un singolo container, con Kubernetes che gestisce i pod (e non
direttamente i container, che vengono invece gestiti dal
container runtime, ad es., containerd)

= pod multi-container — per eseguire piu container in un pod —
questo € utile se i diversi container del pod devono essere
colocalizzati (in un singolo nodo del cluster), ad es., perché
devono condividere delle risorse (in genere, dei volumi)

= tutti i container di un pod vengono infatti rilasciati in uno
stesso nodo worker

= poiché questi container condividono l'indirizzo IP del pod,
possono comunicare facilmente tra loro (su localhost) — ma
devono comunicare con l'esterno del pod mediante porte
distinte

29 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Specifica di un pod

o La specifica di un pod (o di ogni altra risorsa Kubernetes) puo
contenere numerosi campi

= la tipologia (kind) di risorsa — ad es., Pod

= metadati della risorsa — tra cui il nome, il namespace e delle
etichette

= la specifica (spec) della risorsa — nel caso di un pod
= | container che compongono il pod, ciascuno con
- nome
immagine
porte su cui il container comunica
variabili d’'ambiente

30 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Label

o | metadati di una risorsa Kubernetes possono contenere delle
etichette (zero, una o piu)

= ogni etichetta (label) ha una chiave e un valore

= nelllambito di un’applicazione, € comune associare a
ciascuna risorsa almeno un’etichetta app che specifica il
nome dell’applicazione a cui si riferisce quella risorsa

= nelle applicazioni a microservizi, oltre all’etichetta app
(uguale per tutti i microservizi) € anche comune associare a
ciascuna risorsa anche un’etichetta service che specifica |l
microservizio a cui si riferisce quella risorsa — a un
microservizio possono essere associate piu risorse

31 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Label

o | metadati di una risorsa Kubernetes possono contenere delle
etichette (zero, una o piu)

= come discuteremo piu avanti, le etichette sono importanti per
consentire la selezione delle risorse

= infatti, la selezione delle risorse avviene in genere sulla base
delle etichette — e non sulla base dei nomi delle risorse
(come si potrebbe invece pensare)

= in questa introduzione a Kubernetes, utilizziamo le sole
etichette app e, piu avanti, anche service

32 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Pod - discussione

o Alcune osservazioni sui pod

= i pod (e i loro indirizzi di rete) sono effimeri — ogni volta che
viene creato (o ricreato) un pod (il che & possibile e comune),
gli viene assegnato un indirizzo di rete differente

= questo solleva il problema della comunicazione con i pod —
sia della comunicazione tra pod (all’interno del cluster) che
della comunicazione con i client finali (dall’esterno del
cluster)

= il problema della comunicazione tra e con i pod € risolto in
Kubernetes dai service (descritti piu avanti)

= Kubernetes raccomanda di non creare pod direttamente

= piuttosto, consigli di crearli indirettamente mediante I'uso di
controller (descritti piu avanti)

33 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Controller

o Un controller & una risorsa Kubernetes che ha lo scopo di gestire
e controllare un gruppo di pod correlati (in genere, basati su
un’identica specifica di container)

= i controller piu comuni sono quelli che consentono di gestire e
controllare un numero stabile di repliche di un pod — ne
esistono di diversi tipi

= un replica set consente di specificare il numero di repliche
desiderato di un tipo di pod

= un daemon set consente di avere esattamente una replica di
un pod per ciascun nodo worker del cluster

- i daemon set sono utili, ad es., per eseguire un agente
(demone) di monitoraggio in ciascun nodo del cluster,
oppure per la raccolta dei log del nodo

- per motivi di sicurezza, i nodi del control plane di solito
non eseguono repliche dei pod delle applicazioni

34 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Controller

o Un controller & una risorsa Kubernetes che ha lo scopo di gestire
e controllare un gruppo di pod correlati (in genere, basati su
un’identica specifica di container)

= i controller hanno lo scopo di controllare il proprio gruppo di pod
in modo attivo
= un controller non solo consente di creare un gruppo di pod,
ma anche di garantirne I'esistenza, in modo stabile
= ad es., se uno dei pod di un replica set fallisce (o se viene
eliminato), allora il pod viene rischedulato (a livello di cluster)
e riavviato
- un pod fallito di un replica set potrebbe essere riallocato
in un nodo worker diverso
- in ogni caso, ad un pod che viene ricreato viene di solito
assegnato un indirizzo di rete differente da quello del pod
che e fallito

35 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Controller

o Un controller & una risorsa Kubernetes che ha lo scopo di gestire
e controllare un gruppo di pod correlati (in genere, basati su
un’identica specifica di container)

= ulteriori tipi di controller
= un job consente di garantire che un numero specificato di
pod di un certo tipo vengano creati e terminino con successo
= uno stateful set consente di gestire applicazioni stateful
- in modo simile a un replica set, garantisce l'esistenza di
un numero desiderato di repliche di un tipo di pod
- tuttavia, in un replica set i diversi pod sono considerati
equivalenti e intercambiabili
- invece, in uno stateful set, i pod non sono intercambiabili,
ma sono ordinati e hanno un’identita persistente che

viene mantenuta nelle successive rischedulazioni dei pod
— questo e utile per pod che hanno dei volumi persistenti

36 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Replica Set

0 Ecco la specifica di un replica set (file hello-rs.yaml)

apiVersion: apps/vil
kind: ReplicaSet
metadata:
name: hello-rs
spec:
replicas: 2
selector:
matchLabels:
app: hello
template:
metadata:
name: hello-pod
labels:
app: hello
spec:
containers:
- name: hello-container
image: aswroma3/hello-kube:latest

37 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Replica Set

o Nell’esempio, si noti 'uso dei seguenti campi
= il campo template definisce una specifica di pod

= il replica set si occupera di controllare la creazione del
numero desiderato di repliche di pod basati su questo
template

= Si ricordi la raccomandazione di Kubernetes di non creare
pod direttamente

= il campo replicas specifica il numero di repliche desiderato

= il campo selector specifica il criterio di selezione (basato su
etichette) dei pod che fanno parte di questo replica set

38 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

.

Replica Set

6)
hello-rs.yaml
Pod Template ReplicaSet
name: hello-pod name: hello-rs
labels: replicas: 2
- app: hello selector:
containers; app=hello
- image:
9)

worker node 1 (10.11.1.71)

worker node 2 (10.11.1.72)

worker node 3 (10.11.1.73)

container runtime

(192.168.89.21)

Pod: hello-rs-ab

container runtime

container runtime

Pod: hello-rs-xy
(192.168.79.14)

&

O

ReplicaSet: hello-rs

replicas: 2

selector:

Kubernetes cluster

__

Orchestrazione di container con Kubernetes

Luca Cabibbo ASW

& Deployment

o Un deployment € un controller Kubernetes di alto livello che
consente una specifica dichiarativa di pod e replica set

= la specifica di un deployment & simile a quella di un replica set

= in pratica, Kubernetes gestisce un deployment mediante la
creazione di un replica set per il deployment

= Kubernetes raccomanda anche di non creare replica set

direttamente

= piuttosto, consiglia di crearli indirettamente mediante I'uso di
deployment

= inoltre, con un deployment € semplice effettuare la scalatura (in
alto o in basso) di un insieme di pod, nonché di effettuarne un
rolling update o un rollback

40

Orchestrazione di container con Kubernetes

Luca Cabibbo ASW

) Deployment

0 Ecco la specifica di un deployment (file hello-deployment.yaml)

41

apiVersion: apps/vil
kind: Deployment
metadata:
name: hello-deploy
spec:
replicas: 2
selector:
matchLabels:
app: hello
template:
metadata:
name: hello-pod
labels:
app: hello
spec:
containers:
- name: hello-container
image: aswroma3/hello-kube:latest

Orchestrazione di container con Kubernetes

Luca Cabibbo ASW

) Deployment

C

6)

hello-deployment.yami

Pod Template Deployment
name: hello-pod name: hello-dp
labels: replicas: 2
- app: hello selector:
containers; app=hello

- image:

worker node 1 (10.11.1.71) worker node 2 (10.11.1.72)

worker node 3 (10.11.1.73)

container runtime container runtime

Pod: hello-dp-12-ab
(192.168.89.21)

O [zopmhetol,

<.
S

container runtime

Pod: hello-dp-12-xy
(192.168.79.14)

&

ReplicaSet: hello-dp-12)
Deployment: hello-dp - = replicas: 2

selector:

Kubernetes cluster

__

Orchestrazione di container con Kubernetes

Luca Cabibbo ASW

) - Un esperimento

o Prima di andare avanti, facciamo questo esperimento

= avviamo l'applicazione con
kubectl apply -f hello-deployment.yaml

= eseguiamo il comando kubectl get all -o wide

= a questo punto, dovremmo vedere le istanze di risorse
mostrate nella figura precedente (anche se con nomi diversi)

- un deployment, un replica set e due pod

= “uccidiamo” ora uno dei pod, con il comando
kubectl delete pod/nome-di-uno-dei-pod

= eseguiamo di nuovo il comando kubectl get all -o wide

= a questo punto, dovremmo vedere ancora un deployment,
un replica set e due pod

- uno dei pod & perd diverso da quello che é stato “ucciso”
— inoltre, il suo indirizzo IP é probabilmente diverso da
quello del pod che e stato “ucciso”

43 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Un esperimento

o Questo esperimento consente di comprendere una frase scritta in
precedenza

= “guando viene rilasciata una risorsa, Kubernetes inizia a
lavorare costantemente per garantire I'esistenza delle
corrispondenti istanze di risorsa”

= quando rilasciamo un controller (come un replica set o un
deployment), Kubernetes si occupa non solo di creare le risorse
corrispondenti — ma si occupa anche di monitorarle e, nel caso
di un loro fallimento, di ricrearle — sulla base delle specifiche
fornite

44 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Service (prima parte)

o Consideriamo ora il problema della comunicazione tra e con i pod

= un primo problema da affrontare € che i pod (e i loro indirizzi di
rete) sono effimeri — ogni volta che viene creato (o ricreato) un
pod (il che & possibile e comune), gli viene assegnato un
indirizzo di rete differente

= una soluzione a questo problema é offerta dai service — un’altra
astrazione di Kubernetes, rappresentata da un’altra tipologia di
risorsa

45 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Service

o Un service € una risorsa che definisce un punto di accesso
costante a un gruppo di pod che offrono uno stesso servizio
applicativo

= ogni service ha un nome, un tipo (discusso piu avanti), un
indirizzo IP (chiamato cluster IP, un indirizzo IP nella service
network) e una porta che non cambiano mai durante |'esistenza
del service

= non cambiano nemmeno se, nel corso del tempo, cambiano
le istanze del gruppo di pod (istanze di container) a cui il
service si riferisce

= attenzione: la locazione del service cambia se il service
viene arrestato e ricreato

= in particolare, € utile e comune creare dei service in
corrispondenza ai deployment — per definire un punto di
accesso unico alle repliche di pod specificate da un deployment

46 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Service

0 Un service & una risorsa che definisce un punto di accesso
costante a un gruppo di pod che offrono uno stesso servizio

applicativo
= inoltre, usando un service, un pod pud comunicare con un altro

pod dell'applicazione tramite il suo cluster IP (che & stabile) — o,

ancora piu semplicemente, tramite il nome del service

associato al pod (grazie al DNS del cluster)

= ogni accesso fatto mediante l'indirizzo IP (o il nome) e la

porta del service verra inoltrata (tramite kube-proxy) a uno
dei pod del service — in genere, il service opera anche da
load balancer nei confronti dei suoi pod

Luca Cabibbo ASW

47 Orchestrazione di container con Kubernetes

) Service

0 Ecco la specifica di un service (file hello-service-clusterip.yaml)
= la specifica del deployment é rimasta invariata

apiVersion: apps/vil
kind: Deployment apiVersion: vi1
metadata: kind: Service
name: hello-deploy metadata:
. come prima ... name: hello-svc
spec:
type: ClusterlIP
selector:
app: hello
ports:
- port: 8080
targetPort: 8080

48 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Service

o Nella specifica di un service

= il campo type indica il tipo di service (i tipi di service sono
discussi piu avanti) — il default &€ ClusterlP

= il selettore consente di selezionare (tramite etichette) i pod a cui
e associato il service

= inoltre, il campo port indica la porta su cui va esposto il service,
mentre targetPort indica la porta di interesse esposta dal pod

49 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Service

0 Ecco alcuni comandi kubectl per la gestione dei service
= kubectl apply -f hello-service.yaml

= in questo caso, crea il deployment (con il suo replica set e i
suoi pod) e il service hello-svc

= kubectl get services oppure kubectl get svc
= elenca i service del cluster
= kubectl describe svc/hello-svc

= fornisce informazioni sul service specificato — come il suo
tipo (in questo caso, Cluster IP), il suo indirizzo IP, la sua
porta, gli endpoint dei pod a cui € associato

= in questo caso, € possibile accedere al service mediante |l
suo indirizzo IP (ma sempre solo dalle macchine interne del
cluster)

= kubectl delete svc/hello-svc
= elimina il service specificato

50 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)\ Deployment e Service

C

o)

hello-service-clusterip.yami

Pod Template Deployment fService
name: hello-pod name: hello-dp name: hello-svc
labels: replicas: 2 type: ClusterlP
- app: hello selector: selector:
containers; app=hello app=hello
- image: ports:

K 8080 — 8080 /

\

51

<=

Orchestrazione di container con Kubernetes

ASW

)\ Deployment e Service

Service: hello-svc (ClusterlP)

10.109.64.82:8080

selector:

| worker node 1 (10.11.1.71)

worker node 2 (10.11.1.72)

worker node 3 (10.11.1.73)

container runtime

Pod: hello-dp-12-ab

<&

container runtime

container runtime

Pod: hello-dp-12-xy
(192.168.79.14)

&

' 8080 (192.168.89.21)

ReplicaSet: hello-dp-12

------ = replicas: 2

selector:

Orchestrazione di container con Kubernetes

ASW

)

) 2 Service (seconda parte)

o Consideriamo ancora il problema della comunicazione tra e con |
pod

= un secondo problema da affrontare € che gli indirizzi di rete
assegnati ai pod appartengono alla pod network e quelli
assegnati ai service appartengono alla service network

= queste reti sono perd entrambe reti private del cluster, e
pertanto rimane il problema dell’accesso ai pod da parte dei
client esterni al cluster

= | service offrono anche una soluzione a questo problema

53 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

Service accessibili dai pod interni
y P

o Kubernetes fornisce diversi tipi di service

= un primo tipo (ClusterlP) sostiene direttamente solo la
comunicazione tra i pod interni al cluster

= ClusterIP — associa al service un indirizzo IP interno al
cluster (cluster IP) — il service agisce da load balancer tra i
pod associati al service

= questo tipo di service € utile per semplificare la
comunicazione interna tra pod

- un’alternativa € usare un servizio di service discovery
applicativo come Consul oppure il servizio di service
discovery di Kubernetes (discusso piu avanti)

54 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Service accessibili dai client esterni

o Kubernetes fornisce diversi tipi di service

= altri tipi di service sono accessibili anche da client esterni al
cluster (ad es., dalla VM kube-dev)

= NodePort — estende ClusterlP, allocando (come suggerisce
il nome) anche una porta per il service sui nodi del cluster

- in questo modo, ogni nodo del cluster € in grado di
accettare richieste sulla porta associata al service e di
inoltrarle al service (“ingress routing mesh”)

- ha degli inconvenienti (ad es., la porta deve essere nel
range 30000-32767, si puo avere un solo servizio per
porta), ed é sconsigliato in produzione — ma e utile
durante lo sviluppo

55 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Service accessibili dai client esterni

o Kubernetes fornisce diversi tipi di service

= altri tipi di service sono accessibili anche da client esterni al
cluster (ad es., dalla VM kube-dev)

= LoadBalancer — estende NodePort, ed espone il servizio
esternamente usando un load balancer esterno — si noti che
Kubernetes non offre direttamente un servizio di questo tipo,
ma puo chiedere al provider di cloud in cui viene eseguito il
cluster Kubernetes di allocare un load balancer esterno e di
effettuare il routing verso il service

- € adatto ad esporre un servizio all’esterno in produzione,
ed € un modo standard di esporre un servizio su Internet

56 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) NodePort

o Ecco la specifica di un service di tipo NodePort
(file hello-service-nodeport.yaml)
= |la specifica del deployment & rimasta invariata

apiVersion: vi
kind: Service
metadata:
name: hello-svc
spec:
type: NodePort
selector:
app: hello
ports:
- port: 8080
targetPort: 8080
nodePort: 32081

= il campo nodePort (opzionale) indica la porta esterna per il
service — se assente, viene assegnata in modo casuale
nell'intervallo (di solito) 30000-32767 e

57 Orchestrazione di container con Kubernetes

) NodePort

C 5
hello-service-nodeport.yaml
Pod Template Deployment (" service A
name: hello-pod name: hello-dp name: hello-svc
labels: replicas: 2 type: NodePort
- app: hello selector: selector:
containers; app=hello app=hello
- image: ports:
8080 — 8080
S nodePort: 32081) o

<=

58 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

NodePort

)
&

Service: hello-svc (NodePort)

| 32081 |
: selector: i
i 132081} 132081} 32081 i
| worker node 1 (10.11.1.71) worker node 2 (10.11.1.72) worker node 3 (10.11.1.73) !
i container runtime container runtime container runtime |
| Pod hello-dp-12-ab Pod: hello-dp-12-xy |
i 18080 (192.168.89.21) (192.168.79.14) I
i ReplicaSet: hello-dp-12 ;
| Deployment: hello-dp - = replicas: 2 !
: lector: = |
| selector Kubernetes cluster !
59 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) NodePort

o Ecco un client minimale basato su curl
= il client accede al service sulla porta 32081

= supponiamo che il DNS usato dal client (oppure il suo file
/etc/hosts) associ il nome kube-node a qualunque nodo del
cluster Kubernetes

curl kube-node:32081

= nel caso in cui la porta associata al service non sia nota, si pud
usare kubectl per determinarla

SERVICE_PORT=S$(kubectl get svc/hello-svc \

-0 go-template='{{(index .spec.ports 0).nodePort}}')
curl kube-node:${SERVICE_PORT}

60 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

- Un altro esperimento
y P

o Prima di andare avanti, facciamo questo esperimento

= avviamo l'applicazione con
kubectl apply -f hello-service-nodeport.yaml

= eseguiamo il comando kubectl get all -o wide

= a questo punto, dovremmo vedere le istanze di risorse
mostrate nella figura precedente (anche se con nomi diversi)

- tra di queste, il service hello-svc, di tipo NodePort, a cui &
associato un indirizzo IP (cluster IP) e una porta

= “uccidiamo” uno dei pod, come nell’esperimento precedente
= eseguiamo di nuovo il comando kubectl get all -o wide

= a questo punto, dovremmo vedere che non sono cambiati né
I'indirizzo IP né la porta associati al service hello-svc

- infatti, un service definisce un punto di accesso costante
a un gruppo di pod per un servizio applicativo — mentre la
composizione di questo gruppo puo variare nel tempo

61 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Ingress

o Uningress € una risorsa per effettuare il routing di richieste HTTP
e HTTPS indirizzate ai nodi del cluster verso service interni al
cluster

= si tratta di una modalita aggiuntiva per rendere uno o piu
service (di tipo NodePort o LoadBalancer) accessibili a client
esterni al cluster

= non solo con riferimento a una porta, ma anche a un
hosthname oppure a un path

= 'uso degli ingress richiede l'installazione nel cluster di un
ingress controller (come add-on)

= nellambiente kube-cluster viene utilizzato NGINX Ingress
Controller — & configurato per ascoltare richieste HTTP sulla
porta 31080 di tutte le macchine (con alias kube-cluster) ma
anche sulla porta 80 dei nodi worker (con alias kube-node)

62 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Ingress

0 Ecco la specifica di un ingress apiVersion: networking.k8s.io/v1

file hello-ingress.yaml kind: Ingress
(g y) metadata:

name: hello-1ing

apiVersion: vi spec:
kind: Service ingressClassName: nginx
metadata: rules:
name: hello-svc - host: hello.aswroma3.it
spec: http:
type: NodePort paths:
selector: - pathType: Prefix
app: hello path: /
ports: backend:
- port: 8080 service:
targetPort: 8080 name: hello-svc
nodePort: 32081 port:

number: 8080

= il service hello-svc viene esposto su http://hello.aswroma3.it/ —
sulla porta associata all'ingress controller, nel nostro caso 80

63

Luca Cabibbo ASW

Orchestrazione di container con Kubernetes

) Ingress

o Un ingress puo0 specificare piu regole di routing
= ciascuna di queste regole pud associare un service (campi
service.name e service.port.number) a un URI composto dal
nome di un host (campo host) e da un path (campo path)
= nell’esempio, il service hello-svc (su 8080) & esposto
sul’URI http://hello.aswroma3.it/ (su 80)

64

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Ingress

o Un ingress pu0 specificare piu regole di routing
= ciascuna di queste regole pud associare un service (campi

service.name e service.port.number) a un URI composto dal
nome di un host (campo host) e da un path (campo path)

= inoltre

= il campo host € opzionale, e pud essere specificato in modo
esatto (hello.aswromaa3.it) oppure con delle wildcard
(*.hello.com)

= il campo path pud essere specificato in modo esatto
(pathType: Exact) oppure come un prefisso (pathType:
Prefix)

= € possibile la riscrittura dell’'URI della richiesta

= € possibile effettuare il “canary” di alcune richieste su servizi
differenti

65 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Ingress

o Per accedere effettivamente a un service mediante un ingress
dall’'esterno del cluster, € inoltre necessario che il nome dell’host
specificato sia registrato nel DNS che serve il client esterno — e
che il DNS associ questo nome ai nodi worker del cluster

= per fare degli esperimenti
= € possibile associare I'host all'indirizzo IP dei nodi worker del
cluster nel file /etc/hosts del client, e poi usare
curl http://hello.aswroma3.it
= oppure si puo usare curl con I'opzione --connect-to (redirige
una richiesta da una coppia host:porta a un’altra)

curl http://hello.aswroma3.it \
--connect-to hello.aswroma3.it:80:kube-node:80

= oppure si puo usare curl indicando un header di tipo Host
(presenta la richiesta come se rivolta all’host specificato)

curl kube-node --header "Host: hello.aswroma3.it"

66 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Ingress

C S
hello-ingress.yami
4 .)
Pod Template Deployment Service Ingress
name: hello-pod name: hello-dp name: hello-svc name: hello-ing
labels: replicas: 2 type: NodePort rules:
- app: hello selector: selector: - hello/ — hello-svc:8080
containers; app=hello app=hello
- image: ports:
Y 8080 — 8080)
- O
67 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Ingress

http://hello/ |- - - - - - - - ,

F-——

Service: hello-svc (NodePort)

32081
selector: |app=hello
http://hello/ http://hello/ http://hello/
container runtime container runtime container runtime

Pod: hello-dp-12-ab

Pod: hello-dp-12-xy
(192.168.89.21)

(192.168.79.14)

<&

&

ReplicaSet: hello-dp-12)
Deployment: hello-dp - > replicas: 2

selector:

__

worker node 1 (10.11.1.71) worker node 2 (10.11.1.72) worker node 3 (10.11.1.73) i

68 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Ingress

o Ecco un client minimale basato su curl
= || client accede al service sull’host hello.aswroma3.it

= supponiamo che il DNS usato dal client (oppure il suo file
/etc/hosts) associ hello a qualunque nodo worker del cluster
Kubernetes

curl hello.aswroma3.it

= nel caso in cui l'ingress controller sia associato a una porta
diversa dalla porta 80 — ad es., la porta 31080

curl hello.aswroma3.it:31080

= nel caso in cui I'’host hello non sia registrato nel DNS, per fare
degli esperimenti veloci nel cluster kube-cluster

curl hello.aswroma3.it --connect-to hello.aswroma3.it:80:kube-node:80
= Oppure anche

curl kube-node --header "Host: hello.aswroma3.it"

69 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Namespace

o Un namespace consente di associare una portata (scope) a
ciascuna risorsa

= utile quando il cluster viene utilizzato per eseguire piu
applicazioni, oppure € condiviso tra piu utenti

= ovvero, quando € possibile che ci siano sovrapposizioni di
nomi tra le risorse di applicazioni o utenti diversi

= | namespace consentono di separare le risorse in “gruppi”
distinti — nonché di operare all'interno di un solo “gruppo”
alla volta

= in pratica, i namespace sono un modo per gestire piu cluster
virtuali in un unico cluster fisico

= S€ per una risorsa non viene specificato nessun namespace,
allora quella risorsa viene allocata nel namespace default

= nota: i namespace di Kubernetes sono una cosa diversa dai
namespace di Linux (usati, ad es., da runc e containerd)

70 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Namespace

0 Un primo modo di utilizzare i namespace (file hello-
namespace.yaml)

= scrivere la specifica di un namespace

= nelle altre specifiche, indicare esplicitamente (tra i metadati) il
namespace da usare per ciascuna risorsa

apiVersion: vi
kind: Namespace
metadata:

name: hello

apiVersion: apps/vil

kind: Deployment
metadata:

name: hello-deploy
namespace: hello

. come prima ...

71

apiVersion: vi
kind: Service
metadata:
name: hello-svc
namespace: hello
. come prima ...

apiVersion: networking.k8s.io0/v1
kind: Ingress
metadata:

name: hello-ing

namespace: hello

. come prima ...

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

() Namespace

o)
hello-namespace.yami
Namespace
name: hello
4 N _)
Pod Template Deployment Service Ingress
name: hello-pod name: hello-dp name: hello-svc name: hello-ing
labels: ns: hello ns: hello ns: hello
- app: hello replicas: 2 type: NodePort rules:
containers; selector: selector: - hello/ — hello-svc:8080
- image: app=hello app=hello
ports:
8080 — 8080)
.),

72

<=

Orchestrazione di container con Kubernetes Luca Cabibbo ASW

Namespace

)
&

http://hello/ |- - - - - - - - - e,

F-——

Namespace: hello

Service: hello-svc (NodePort)

| 32081 |
i selector: !
i http://hello/ http://hello/ http://hello/ i
! worker node 1 (10.11.1.71) worker node 2 (10.11.1.72) worker node 3 (10.11.1.73) !
i container runtime container runtime container runtime i
| Pod hello-dp-12-ab Pod: hello-dp-12-xy |
‘|| [8080] (192.168.89.21) (192.168.79.14) E
i ReplicaSet: hello-dp-12 i
! Deployment: hello-dp - = replicas: 2 |
: lector: = :
! selector Kubernetes cluster !
73 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Namespace
0 Ecco alcuni comandi kubectl per la gestione dei namespace
= kubectl create namespace hello
= crea il namespace di nome hello
= kubectl get namespaces oppure kubectl get ns
= elenca tutti i namespace

= kubectl get pods --namespace hello oppure
kubectl get pods -n hello

= elenca tutti i pod del namespace specificato
= kubectl get pods --all-namespaces
= elenca tutti i pod di tutti i namespace
= kubectl get pods
= elenca tutti i pod del namespace default
= kubectl delete namespace hello
= cancella il namespace hello (con tutte le sue risorse)

74 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Namespace

o Un secondo modo di utilizzare i namespace

= usare l'ultima specifica mostrata in precedenza — senza la
risorsa namespace né l'indicazione del namespace tra i
metadati delle altre risorse

= usare il seguente script per avviare I'applicazione — I'opzione -n
consente di creare le risorse del file nel namespace specificato

» kubectl create namespace hello

« kubectl apply -f hello-application.yaml -n hello
= usare il seguente script per arrestare I'applicazione

» kubectl delete -f hello-application.yaml -n hello

» kubectl delete namespace hello

= questo modo di procedere consente di mantenere le specifiche
delle risorse indipendenti dai namespace utilizzati per il loro
rilascio

75 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Probe

o Kubernetes (tramite kubelet) usa i probe (“sonda”) per verificare lo
stato di salute dei pod

= | probe sono in qualche modo simili ai controlli sullo stato di
salute dei container che con Docker sono abilitati dall’istruzione
HEALTHCHECK nei Dockerfile

= & pero utile sapere che eventuali istruzioni HEALTHCHECK nei
Dockerfile sono ignorate da Kubernetes — al loro posto vanno
utilizzati i probe

76 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Probe

o | probe possono essere definiti nella specifica di un pod

template:

spec:
containers:
- image: aswroma3/hello-kube:latest
livenessProbe:

readinessProbe:

= 0gni probe ha dei parametri propri

= || caso piu semplice & un probe é basato su una richiesta HTTP
GET su una porta e un path del pod

= il pod “passa” (supera) il check se la risposta ha un codice
2xx 0 3xX, e non lo passa con un codice di errore 4xx e 5xx

77 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Probe

o Ci sono diversi tipi di probe

= un liveness probe consente di verificare periodicamente lo stato
di salute di un pod

= se il check fallisce, il pod viene ucciso e riavviato

livenessProbe:
httpGet:
path: /actuator/health
port: 8080
periodSeconds: 5
failureThreshold: 3
initialDelaySeconds: 120

= in questo caso, lo stato di salute dell'applicazione nel pod
viene verificato ogni 5 secondi — e sono ammessi al piu 3
fallimenti consecutivi — ma aspettando prima 2 minuti per
I'avvio del pod

= € utile, ad es., se il pod puo andare in loop o essere
coinvolto in un deadlock, senza perd andare in crash

78 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Probe

o Ci sono diversi tipi di probe

= anche un readiness probe consente di verificare
periodicamente lo stato di salute di un pod

= tuttavia, se il check fallisce, Kubernetes si limita a non
inoltrare richieste al pod — fino a quando il pod non tornera a

passera il check

readinessProbe:
httpGet:
path: /actuator/health
port: 8080
periodSeconds: 10

= e utile, ad es., quando il tempo di avvio di un pod non &
breve — in particolare, durante i rolling update

79 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Probe

o Ci sono diversi tipi di probe
= uno startup probe € utile per i pod che richiedono un tempo alto
di avvio ed inizializzazione

startupProbe:
httpGet:
path: /actuator/health
port: 8080
periodSeconds: 10
failureThreshold: 30

= in questo caso, I'applicazione nel pod deve avere un tempo
massimo di avvio di 10*30=300 secondi (5 minuti)

- altrimenti, il pod viene ucciso e riavviato

= questo probe viene usato solo durante I'avvio del pod — nel
frattempo gli altri tipi di probe sono disabilitati

= utile per avere probe a granularita temporale differente — piu
lunga per lo startup, piu breve per liveness e readiness

80 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) - Architettura dell’applicazione hello

o Per riassumere, la seguente figura descrive 'architettura
dell'applicazione hello, rappresentando le risorse Kubernetes
utilizzate

S0 0@

http://hello hello-svc I hello-deploy

81 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

Y * Orchestrazione con Kubernetes

o Discutiamo ora il rilascio su Kubernetes di un’applicazione multi-
servizi e multi-container

= come applicazione di esempio, consideriamo di nuovo
I'applicazione sentence per generare frasi in modo casuale

= questa applicazione é basata su un servizio principale sentence
che utilizza degli ulteriori servizi per generare parole di tipo
diverso (subject, verb e object) e un AP| gateway api-gateway

= questa applicazione € stata inizialmente presentata nella
dispensa su Spring Cloud — e poi ripresa nella dispensa
sull’esecuzione di applicazioni Spring con Docker (che usiamo
come punto di partenza)

subject

A 4

sentence verb

A 4

api-gateway

object

82 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

Y Un’applicazione per frasi casuali

o Per rilasciare I'applicazione sentence con Kubernetes, possiamo
usare

= per il servizio applicativo principale sentence

= un'immagine di container sentence-sentence-kube:latest
(sentence-sentence-kube:2025-10)

= un deployment — per allocare piu pod
= un service sentence — di tipo ClusterlP
= per gli ulteriori servizi applicativi subject, verb e object

= un’ immagine di container sentence-word-kube:latest
(sentence-word-kube:2025-10), con tre profili subject, verb e
object

= un deployment per ciascun tipo di parola
= Un service per ciascun tipo di parola, di tipo ClusterlIP

83 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

Y Un’applicazione per frasi casuali

o Per rilasciare I'applicazione sentence con Kubernetes, possiamo
usare

= per 'API| gateway apigateway
= un'immagine di container sentence-apigateway-kube:latest
(sentence-apigateway-kube:2025-10)
= un deployment — per allocare piu pod

= un service apigateway di tipo NodePort — esposto mediante
un ingress su http://sentence.aswromaa3.it/, per effettuare |l
routing delle richieste dei client verso il servizio richiesto

= inoltre, per la comunicazione tra i servizi utilizziamo il servizio di
service discovery di Kubernetes

= in alternativa, € possibile usare Consul

= oppure si potrebbe usare il DNS fornito da Kubernetes (ma
in questo caso I'implementazione richiesta € leggermente
differente, ed anche il comportamento ¢ differente)

84 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

®

! http://sentence

apigateway

apigateway

o9 o¢

sentence sentence

ah-4 o Q

subject subject

system .
discovery ! !

. @—[@ —Q-Q

verb verb

N
85 Orechestrazione-di-contat Kttb t tuea-Cabibb W
Orehestt rereonKuberretes ———————————————————————————————————toeaCabibbe A

) Modifiche alle applicazioni

o Rispetto a quanto visto nella dispensa sull’esecuzione di
applicazioni Spring con Docker, i nostri servizi applicativi vanno
configurati come segue (il codice non va modificato)

= |la configurazione di tutte le applicazioni va modificata come
segue

= va rimossa la dipendenza starter per Consul (che non viene
piu usato)

= al suo posto, va utilizzata la dipendenza spring-cloud-starter-
kubernetes-client-loadbalancer

= dalla configurazione (file application.properties) va rimossa
la sezione per Consul (si pud anche lasciare, perché
comunque viene ignorata)

= nel nostro esempio, non € invece necessaria nessuna
configurazione per il servizio di service discovery di
Kubernetes

86 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Modifiche alle applicazioni

o Rispetto a quanto visto nella dispensa sull’esecuzione di
applicazioni Spring con Docker, i nostri servizi applicativi vanno
configurati come segue (il codice non va modificato)

= nel servizio sentence, i client REST possono continuare a fare
riferimento alle diverse istanze per il servizio delle parole
utilizzando gli URI http://subject, http://verb e http://object — cosi
come si faceva usando Consul per la service discovery

= Se anziché il servizio di service discovery di Kubernetes si
volesse invece basare la comunicazione tra servizi sul DNS
di Kubernetes, si dovrebbero pero utilizzare gli URI
http://subject:8080, http://verb:8080 e http://object:8080

87 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Modifiche alle applicazioni

o Rispetto a quanto visto nella dispensa sull’esecuzione di
applicazioni Spring con Docker, i nostri servizi applicativi vanno
configurati come segue (il codice non va modificato)

= nel servizio apigateway, nemmeno la configurazione dell’ API
gateway e delle sue rotte va modificata

= Se invece si volesse basare la comunicazione sul DNS di
Kubernetes, andrebbero pero cambiati gli URI usati nelle
diverse rotte — ad es., da Ib://sentence a
http://sentence:8080

88 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Dockerfile

o Per ciascuno dei servizi bisogna definire un Dockerfile
= come esempio, questo € il Dockerfile per il servizio sentence

= 'applicazione Spring per il servizio sentence viene associata a
una porta nota (del container, non dell’host) — ad es., 8080

Dockerfile per il servizio sentence
FROM eclipse-temurin:21-jdk

ADD build/libs/sentence.jar sentence.jar
EXPOSE 8080

ENTRYPOINT ["java", "-Xmx128m", "-Xms128m", "-jar", "sentence.jar"]

= i Dockerfile per gli altri servizi sono simili

= le immagini Docker di interesse per questa applicazione sono
state create e salvate su Docker Hub

= per farlo, si pud utilizzare anche Docker Compose

89 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Specifica dell’applicazione

o Ecco il file sentence-application.yaml per I'applicazione sentence
= pod template e deployment per le parole

apiVersion: apps/v1 template:
kind: Deployment metadata:
metadata: labels:

name: subject app:.sentenc?
spec: service: subject

replicas: 2 spec: .

selector: contatlners:

matchLabels: - name: subject-container
app: sentence image: aswroma3/sentence-word-kube:latest
env:

service: subject
- name: SPRING_PROFILES_ACTIVE

value: subject
ports:
- containerPort: 8080

= analogamente per verb e object

90 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Specifica dell’applicazione

o Ecco il file sentence-application.yaml per I'applicazione sentence
= pod template e deployment per le frasi

apiVersion: apps/vil template:
kind: Deployment metadata:
metadata: labels:
name: sentence app: sentence
spec: service: sentence
replicas: 2 spec:
selector: containers:
matchLabels: - name: sentence-container

app: sentence image: aswroma3/sentence-sentence-kube:latest

service: sentence ports:
- containerPort: 8080

Luca Cabibbo ASW

91 Orchestrazione di container con Kubernetes

) Specifica dell’applicazione

o Ecco il file sentence-application.yaml per I'applicazione sentence
= pod template e deployment per 'API gateway

apiVersion: apps/vil template:

kind: Deployment metadata:
metadata: labels:
name: apigateway app: sentence
spec: service: apigateway
replicas: 2 spec:
selector: containers:
matchLabels: - name: apigateway-container

app: sentence image: aswroma3/sentence-apigateway-kube:latest

service: apigateway ports:
- containerPort: 8080

92 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Specifica dell’applicazione

o Ecco il file sentence-application.yaml per I'applicazione sentence

= service per le parole

apiVersion: vi
kind: Service
metadata:
name: subject
spec:
selector:
app: sentence
service: subject
ports:
- protocol: TCP
port: 8080
targetPort: 8080

= analogamente per verb e object

Luca Cabibbo ASW

93 Orchestrazione di container con Kubernetes

) Specifica dell’applicazione

o Ecco il file sentence-application.yaml per I'applicazione sentence
= service per le frasi e per 'API gateway

apiVersion: vi

apiVersion: vi

kind: Service kind: Service
metadata: metadata:
name: sentence name: apigateway
spec: spec:
selector: selector:
app: sentence app: sentence
service: sentence service: apigateway
ports: type: NodePort
- protocol: TCP ports:
port: 8080 - protocol: TCP
targetPort: 8080 port: 8080

targetPort: 8080
nodePort: 32082

94 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Specifica dell’applicazione

o Ecco il file sentence-application.yaml per I'applicazione sentence

= ingress per 'AP| gateway — ---
e il punto di ingresso apiVersion: networking.k8s.io/v1l
dell’applicazione kind: Ingress
metadata:
name: sentence
spec:
ingressClassName: nginx
rules:
- host: sentence.aswroma3.it
http:
paths:
- pathType: Prefix
path: /
backend:
service:
name: apigateway
port:
number: 8080

95 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Specifica dell’applicazione

o Ecco il file sentence-application.yaml per I'applicazione sentence

= per rendere visibile il servizio di service discovery ai servizi
dell’applicazione, utilizziamo anche le seguenti regole per la
sicurezza (attenzione, sono molto permissive)

apiVersion: rbac.authorization.k8s.io/v1

kind: Role T .
metadata: apiVersion: rbac.authorization.k8s.io0/v1
name: namespace-reader kind: RoleBinding
rules: metadata:
- apiGroups: [""] name: namespace-reader-binding
subjects:

resources: ["configmaps", "pods",
"services", "endpoints",
"secrets"]

verbs: ["get", "list", "watch"]

- kind: ServiceAccount
name: default
apiGroup: ""

roleRef:
kind: Role
name: namespace-reader
apiGroup: ""

96 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

Y Avvio, accesso e arresto dell’applicazione

o Per avviare I'applicazione
= kubectl create namespace sentence
= kubectl apply -f sentence-application.yaml -n sentence

o Per accedere all’applicazione nel cluster kube-cluster

= curl sentence.aswroma3s.it
--connect-to sentence.aswroma3.it:80:kube-node:80

oppure
= curl kube-node --header "Host: sentence.aswroma3s.it"

o Per arrestare 'applicazione
= kubectl delete -f sentence-application.yaml -n sentence
= kubectl delete namespace sentence

97 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

S

apigateway

apigateway

! http://sentence @
@4 -0 ©®
sentence @ sentence
---------------- ‘ @« N
: II A@ I__@ @
@ : subject subject
{ system
| discovery | | @
i verb verb

@{g @

object

1
! '
! I
' 1
! 1
\ .
\) ’
S P
98 Orehoat R P 1o Cabibb W
Orehestrazione-di-containerconKubermetes————————————————————————————————+wea-Cabibbe 7X

) - Rilascio su AWS
o Discutiamo ora (in modo semplificato) come rilasciare
I'applicazione sentence a container su AWS

= creiamo un cluster Kubernetes utilizzando il servizio
completamente gestito Elastic Kubernetes Service (EKS)

= installiamo e configuriamo nel cluster un ingress controller — ad
es., Ingress-NGINX Controller (€ diverso da NGINX Ingress
Controller usato nel’ambiente kube-cluster, ma le
configurazioni sono compatibili)
= in corrispondenza, EKS crea automaticamente una nuova
istanza di Elastic Load Balancer (ELB) associata all'ingress
controller e gli assegna anche un indirizzo IP esterno
(visibile attraverso la dashboard di AWS) — ad es. xyz.eu-
west-1.elb.amazonaws.com

99 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Rilascio su AWS
o Discutiamo ora (in modo semplificato) come rilasciare
I'applicazione sentence a container su AWS

= possiamo usare una configurazione di deployment per
I'applicazione identica a quella vista — ed esponiamo
I'applicazione mediante un ingress, ad es., sull’host
sentence.aswromad.it
= in effetti, potrebbe essere utile esporre verso I'esterno 'API
gateway con un service di tipo LoadBalancer, oppure anche
introdurre delle ulteriori configurazioni relative alla sicurezza

= aggiungiamo sul servizio Route 53 di AWS un record DNS che

risolve sentence.aswroma3.it con
xyz.eu-west-1.elb.amazonaws.com

100 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)
- Un errore comune
/4

o Attenzione ad evitare i seguenti errori comuni

= dopo aver modificato (il codice sorgente di) una delle
applicazioni, ricordarsi (sempre!) di fare quanto segue

= effettuare (o ripetere) la build (Java) delle applicazioni

= effettuare (o ripetere) la build (Docker) delle immagini
Docker

= effettuare (o ripetere) il push su Docker Hub delle immagini
Docker (in_questo caso € necessario!)

= potrebbe anche essere necessario cancellare le immagini
modificate dalla cache delle immagini dei container nei nodi

worker del cluster (soprattutto se non € cambiato il numero
di versione delle immagini che si vogliono utilizzare)

101 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) *Helm

o Di per sé, i file di configurazione delle risorse Kubernetes non
sono parametrici — ma devono contenere tutte le informazioni per
la creazione delle risorse di interesse

= tuttavia, & spesso utile utilizzare dei file di configurazione
parametrici — per creare delle risorse di interesse in modo
personalizzato

= esempi di parametri potrebbero essere la versione di
un’immagine Docker, il numero di repliche, il valore di alcune
variabili d’'ambiente, o anche 'opzionalita di una sezione di
una configurazione

= questo € utile, in particolare, se chi definisce i file di
configurazione € un team differente da chi dovra usarli

= ad es., Bitnami offre delle immagini Docker per Kafka, con
una configurazione molto complessa, che potremmo voler
utilizzare in modo personalizzato — ad es., per usare Kafka
in modo non sicuro o sicuro, non persistente o persistente

102 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Helm

o Helm € un “package manager” per Kubernetes — che risolve il
precedente problema (in realta, i suoi obiettivi sono piu ampi)

= |a soluzione fornita da Helm & intuitivamente basata su

= un formato parametrico per i file di configurazione delle
risorse — ad es., con una sintassi specifica per i parametri e
per le sezioni opzionali

= |a possibilita di poter specificare i propri parametri in appositi
file di configurazione

= Un pre-processor per le configurazioni, che pud creare le
risorse Kubernetes di interesse interagendo direttamente
con Kubernetes

= queste idee sono rappresentate dai concetti di Helm chiamati
chart, config e release

103 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Helm

o Tre concetti importanti di Helm
= una chart & un insieme di informazioni necessarie per poter
creare un’istanza di applicazione Kubernetes

= una config contiene le informazioni di configurazione che
possono essere utilizzate in una chart per dar luogo a una
configurazione Kubernetes eseguibile

= una release € una istanza eseguibile di una chart, combinata
con una specifica config

104 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

) Helm

o Per esempio, € possibile eseguire Kafka in Kubernetes utilizzando
Helm come segue

= utilizzare la chart bithamicharts/kafka per Kafka

= creare un file di configurazione kafka-values.yaml per
personalizzare la propria installazione di Kafka — ad es., una
configurazione non sicura e non persistente

= avviare Kafka con il comando (qui mostrato semplificato)
helm install -f kafka-values.yaml kafka bitnamicharts/kafka

105 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

) * Discussione

o L’orchestrazione di container € fondamentale per poter rilasciare
in produzione le applicazioni multi-servizi € multi-container — in un
singola macchina oppure in un cluster di macchine, fisiche o
virtuali — on premises oppure nel cloud

= 'orchestrazione di container sostiene infatti la disponibilita e la
scalabilita delle applicazioni di questo tipo — e consente di
sfruttare I'elasticita delle piattaforme virtualizzate e nel cloud

= per questo, i container e gli orchestratori di container sono
diventati delle tecnologie abilitanti per le applicazioni altamente
scalabili — di solito realizzate come applicazioni a microservizi

= nel contesto dei sistemi di orchestrazione di container, oggi
Kubernetes € certamente tra quelli piu diffusi

106 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

Y Discussione

o Le funzionalita di orchestrazione offerte da Kubernetes che sono
state esemplificate o discusse in questa dispensa

= architettura a servizi/microservizi

= uso di un linguaggio dichiarativo per la specifica delle
applicazioni, basato su un insieme di astrazioni (risorse)

= scalabilita e disponibilita dell’orchestratore
= disponibilita delle applicazioni

= comunicazione interna tra servizi

= comunicazione con i client esterni

107 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

)

Y Discussione

o Kubernetes offre anche delle ulteriori funzionalita di
orchestrazione — che non sono state discusse in questa dispensa

= scalabilita delle applicazioni — modifica del numero di repliche
di ciascun tipo di pod — gestita manualmente oppure
automaticamente, sulla base del carico della CPU o di altre
metriche

= aggiornamento delle applicazioni senza interruzione di servizio
(basato sull’aggiornamento delle versioni delle immagini per |
pod dei deployment)

= Kubernetes supporta direttamente diverse strategie: rolling
update, ri-creazione dei pod (con una breve interruzione di
servizio), rollback — e ne supporta altre indirettamente

= gestione di dati persistenti e volumi
= gestione di dati di configurazione e segreti
= gestione della sicurezza

108 Orchestrazione di container con Kubernetes Luca Cabibbo ASW

