
Architettura
dei Sistemi

Software

Luca Cabibbo

Luca Cabibbo ASWLuca Cabibbo ASW

Orchestrazione di container
con Kubernetes

dispensa asw880

ottobre 2025

Orchestrazione di container con Kubernetes1

Give a man a Container
and you keep him busy for a day.

Teach a man Kubernetes
and you keep him busy for a lifetime.

Kelsey Hightower

Luca Cabibbo ASW

- Riferimenti

 Luca Cabibbo. Architettura del Software: Strutture e Qualità.
Edizioni Efesto, 2021.
 Capitolo 40, Orchestrazione di container

 Lukša, M. Kubernetes in Action. Manning, 2018.

 Stoneman, E. Learn Kubernetes in a Month of Lunches, Manning,
2021.

 Kubernetes (version 1.34, 2025)

https://kubernetes.io/

https://kubernetes.io/docs/home/

Orchestrazione di container con Kubernetes2

Luca Cabibbo ASW

- Obiettivi e argomenti

 Obiettivi

 introdurre Kubernetes

 esemplificare l’orchestrazione di container con Kubernetes

 Argomenti

 introduzione a Kubernetes

 architettura di Kubernetes

 risorse Kubernetes

 orchestrazione con Kubernetes

 Helm

 discussione

Orchestrazione di container con Kubernetes3

Luca Cabibbo ASW

* Introduzione a Kubernetes

 Kubernetes è una piattaforma open source, portabile ed
estensibile, per la gestione automatizzata di applicazioni e carichi
di lavoro a container sulla base di configurazioni dichiarative

 il nome Kubernetes (talvolta abbreviato K8S) deriva dal greco e
significa “timoniere” o “pilota”

 inizialmente sviluppato da Google (sulla base di 15 anni di
esperienza nell’eseguire carichi di lavoro su larga scala a
Google), nel 2014 è divenuto un progetto open-source

 oggi è uno dei sistemi di orchestrazione di container più diffusi

 per gli obiettivi dell’orchestrazione di container e i principi
generali di funzionamento si veda il capitolo sull’orchestrazione
di container

Orchestrazione di container con Kubernetes4

Luca Cabibbo ASW

Introduzione a Kubernetes

 Kubernetes è una piattaforma open source, portabile ed
estensibile, per la gestione automatizzata di applicazioni e carichi
di lavoro a container sulla base di configurazioni dichiarative

 in pratica, Kubernetes consente di definire e gestire una
piattaforma costituita da un cluster di nodi in cui eseguire una o
più applicazioni a container

 può essere eseguito in una varietà di ambienti – in un singolo
PC (come ambiente per lo sviluppo e l’apprendimento) oppure
come un cluster di macchine fisiche o virtuali, on premises
oppure nel cloud (come ambiente di produzione)

 nel cloud è possibile creare facilmente un cluster Kubernetes in
un gruppo di macchine virtuali – ma è ancora più semplice
usare uno dei numerosi servizi completamente gestiti per
container basati su Kubernetes – come Google GKE (Google
Kubernetes Engine), Amazon EKS (Elastic Kubernetes Service)
oppure Microsoft AKS (Azure Kubernetes Service)

Orchestrazione di container con Kubernetes5

Luca Cabibbo ASW

* Architettura di Kubernetes

 Descriviamo ora l’architettura di Kubernetes

 un cluster Kubernetes

 ha l’obiettivo di consentire l’esecuzione di una o più
applicazioni a container (in genere una sola applicazione per
cluster, soprattutto nel cloud)

 è basato su diversi componenti software – che vengono
eseguiti in due tipi di macchine

Orchestrazione di container con Kubernetes6

developer

developer
workstation

control
plane

node

Kubernetes cluster

Luca Cabibbo ASW

Cluster Kubernetes

 Un cluster Kubernetes è composto da due tipi di macchine

 uno o più nodi (nodi worker) – in cui vengono effettivamente
eseguiti i container delle applicazioni (chiamati pod in
Kubernetes)

 una o più macchine per il control plane – il control plane
controlla e gestisce l’intero cluster Kubernetes

 il control plane gestisce lo stato del cluster, ma (in genere) le
sue macchine non partecipano all’effettiva esecuzione delle
applicazioni, che viene invece effettuata sui nodi worker

 gli sviluppatori possono rilasciare in un cluster Kubernetes le
proprie applicazioni a container

 in questa dispensa, usiamo il termine “sviluppatore” per
indicare, genericamente, chi si occupa di rilasciare
un’applicazione in un cluster Kubernetes

Orchestrazione di container con Kubernetes7

Luca Cabibbo ASW

Control plane

 Il control plane gestisce il cosiddetto Kubernetes Control Plane,
che controlla il cluster e lo fa funzionare

 le macchine del control plane vengono in genere replicate, per
garantire alta disponibilità e scalabilità (dell’orchestratore)

Orchestrazione di container con Kubernetes8

control plane

API server

scheduler
controller
manager etcd

cloud
controller
manager

Luca Cabibbo ASW

Control plane

 Il control plane ospita i seguenti componenti software

 kube-apiserver (Kubernetes API Server)

 il front-end del Control Plane, che gestisce la comunicazione
tra i diversi componenti software di Kubernetes

 kube-scheduler

 lo scheduler, che schedula i pod delle applicazioni – ovvero,
assegna un nodo a ciascun pod che deve essere eseguito
nel cluster

 kube-controller

 il controller manager, che esegue funzioni a livello di cluster
per controllare (in senso attivo) che lo stato delle
applicazioni rilasciate corrisponda a quello desiderato (come
discusso più avanti) – ad es., controlla i pod e i nodi

 etcd – un data store distribuito che gestisce in modo persistente
e affidabile i dati e la configurazione del cluster

Orchestrazione di container con Kubernetes9

Luca Cabibbo ASW

Control plane

 Il control plane ospita i seguenti componenti software

 cloud-controller-manager (è presente solo se il cluster viene
eseguito nel cloud)

 gestisce la logica di controllo specifica per il cloud

 collega il cluster alle API del provider di cloud utilizzato, e
separa i componenti che interagiscono con la piattaforma di
cloud da quelli che interagiscono solo con il cluster

Orchestrazione di container con Kubernetes10

Luca Cabibbo ASW

Nodi (worker)

 I nodi (worker) eseguono i container (pod) che costituiscono le
applicazioni

 vengono in genere usati più nodi (che possono anche essere
aggiunti dinamicamente al cluster), per garantire alta
disponibilità e scalabilità (delle applicazioni)

Orchestrazione di container con Kubernetes11

control plane

API server

scheduler
controller
manager etcd

cloud
controller
manager

node

kubelet
kube-
proxy

container
runtime

node

kubelet
kube-
proxy

container
runtime

node

kubelet
kube-
proxy

container
runtime

Luca Cabibbo ASW

Nodi (worker)

 Ogni nodo worker ospita i seguenti componenti software

 un container runtime

 per eseguire i container associati ai pod (come containerd
oppure Docker) – non è parte di Kubernetes

 kubelet

 un agente che gestisce i pod di quel nodo – è un
intermediario tra Kubernetes e il container runtime locale

 kube-proxy (Kubernetes Service Proxy)

 un proxy di rete che inoltra e bilancia il traffico di rete tra i
pod

Orchestrazione di container con Kubernetes12

Luca Cabibbo ASW

Client per gli sviluppatori

 Inoltre, sul PC dello sviluppatore di un’applicazione a container va
utilizzato un componente software per interagire con il cluster
Kubernetes

 kubectl

 un’interfaccia dalla linea di comando (CLI) che accetta
comandi dallo sviluppatore e li inoltra (come chiamate
REST) al cluster Kubernetes

Orchestrazione di container con Kubernetes13

developer workstation

kubectl
developer

tools

control plane

API server

scheduler
controller
manager etcd

cloud
controller
manager

Luca Cabibbo ASW

Add-on

 Oltre a questi componenti software, vengono in genere utilizzati
anche degli add-on per estendere le funzionalità di base di
Kubernetes e per fornire dei servizi utili alle applicazioni a
container

 ogni cluster Kubernetes deve avere un cluster DNS, un server
DNS che sostiene la comunicazione tra i container delle
applicazioni – ad es., CoreDNS

 questo è l’unico add-on strettamente necessario

 è inoltre comune utilizzare un add-on per gestire una rete per la
comunicazione tra pod (pod network) – ad es., Project Calico

 ulteriori esempi di add-on sono una dashboard (una web UI per
rilasciare applicazioni e gestire le risorse del cluster) oppure
strumenti per la gestione delle reti, degli ingress (discussi più
avanti), per il monitoraggio e per il logging

Orchestrazione di container con Kubernetes14

Luca Cabibbo ASW

Add-on

 Oltre a questi componenti software, vengono in genere utilizzati
anche degli add-on per estendere le funzionalità di base di
Kubernetes e per fornire dei servizi utili alle applicazioni a
container

 gli add-on vengono eseguiti nel cluster come risorse
Kubernetes, dunque in modo analogo alle risorse delle
applicazioni

 alcuni add-on vengono eseguiti nel control plane (ad es.,
CoreDNS), ma altri add-on vengono invece eseguiti nei nodi
worker

 complessivamente, le funzionalità di orchestrazione vengono
svolte dai componenti software di base di Kubernetes insieme
agli add-on utilizzati

Orchestrazione di container con Kubernetes15

Luca Cabibbo ASW

Reti e indirizzi di rete

 Alcune cose utili da sapere sulla gestione delle reti e degli indirizzi
IP in Kubernetes

 ogni macchina (fisica o virtuale) del cluster ha un proprio
indirizzo IP “esterno” nella rete in cui è collocato – ad es.,
10.11.1.71

 all’interno del cluster viene inoltre definita una rete privata (pod
network) per la comunicazione tra pod – ad es., la rete
192.168.0.0/16 – a ciascun pod viene assegnato un indirizzo IP
in questa rete

 all’interno del cluster viene definita anche un’altra rete privata
(service network) per i servizi (discussi più avanti), per
semplificare la comunicazione tra i pod – ad es., la rete
10.96.0.0/12

 tutti i pod rilasciati nel cluster vengono configurati per usare
automaticamente il cluster DNS

Orchestrazione di container con Kubernetes16

Luca Cabibbo ASW

L’ambiente kube-cluster

 Nel repository GitHub del corso è disponibile un ambiente kube-
cluster per Kubernetes

 una VM per il control plane – kube-1 (10.11.1.71 o 10.11.2.71)

 due VM per i nodi worker – kube-2 (10.11.1.72 o 10.11.2.72) e
kube-3 (10.11.1.73 o 10.11.2.73)

 una VM per lo sviluppatore – kube-dev (10.11.1.79 o
10.11.2.79), con Java, Python, Docker e kubectl

 gli add-on utilizzati nell’ambiente kube-cluster sono

 CoreDNS come cluster DNS

 Calico Project per la gestione della pod network

 NGINX Ingress Controller – un ingress controller basato su
NGINX, che ascolta per HTTP sulle porte 80 (solo sui nodi
worker) e 31080 (su tutte le macchine del cluster)

Orchestrazione di container con Kubernetes17

Luca Cabibbo ASW

L’ambiente kube-cluster

 Nel repository GitHub del corso è disponibile un ambiente kube-
cluster per Kubernetes

 nella rete (file /etc/hosts di ogni VM) sono configurati i seguenti
alias

 kube-cluster per le VM del cluster kube-1, kube-2 e kube-3

 con l’ingress controller che su tutte le macchine ascolta
sulla porta 31080

 kube-control-plane per le VM del control plane kube-1

 kube-node per i nodi worker kube-2 e kube-3

 con l’ingress controller che sui nodi worker ascolta sulla
porta 80

Orchestrazione di container con Kubernetes18

Luca Cabibbo ASW

* Risorse Kubernetes

 Kubernetes definisce un certo numero di astrazioni – chiamate
risorse (API resource oppure Kubernetes resource object) – per la
configurazione dichiarativa delle applicazioni a container

 le risorse Kubernetes più importanti sono

 un pod incapsula un’istanza di container da eseguire nel
cluster – costituisce l’unità di deployment nell’orchestratore

 un replica set consente di gestire automaticamente
l’esecuzione di una o più repliche di un pod

 un daemon set consente di avere una replica di un pod per
ciascun nodo worker del cluster

 un service definisce un punto d’ingresso unico e stabile per
un insieme logico di pod che forniscono uno stesso servizio

 un deployment consente di gestire in modo dichiarativo il
rilascio e l’aggiornamento di un’applicazione

Orchestrazione di container con Kubernetes19

Luca Cabibbo ASW

Risorse Kubernetes

 Ecco alcune nozioni correlate alle risorse Kubernetes

 una tipologia di risorsa rappresenta un’astrazione (una
classificazione) delle entità software gestite da Kubernetes

 ad es., il concetto di pod

 un’istanza di risorsa rappresenta un’entità software runtime
gestita dal cluster Kubernetes

 ad es., un’istanza di un pod per un certo servizio

 una specifica di risorsa (o configurazione di risorsa)
rappresenta lo stato desiderato di un gruppo di una o più
istanze di risorse (con caratteristiche simili)

 ad es., la specifica di un pod per un certo servizio

 in questa dispensa, usiamo il termine generico “risorsa” (senza
nessuna qualificazione) quando il suo significato può essere
dedotto dal contesto in cui compare

Orchestrazione di container con Kubernetes20

Luca Cabibbo ASW

Specifiche di risorse

 Le specifiche di risorse consentono una configurazione
dichiarativa delle applicazioni a container

 infatti consentono agli sviluppatori di descrivere lo stato
desiderato (a runtime) del cluster Kubernetes

 ciascuna specifica di risorsa descrive un “intento” richiesto
durante l’esecuzione di un’applicazione

 quando viene rilasciata una risorsa, Kubernetes inizia a
lavorare costantemente per garantire l’esistenza delle
corrispondenti istanze di risorsa

 per creare e rilasciare una risorsa, bisogna dunque fornire una
specifica della risorsa, che contiene informazioni sulla risorsa
(ad es., la sua tipologia e il suo nome) e sul suo stato
desiderato

 questo avviene mediante un approccio di tipo infrastructure-
as-code – in pratica, di solito, mediante un file YAML

Orchestrazione di container con Kubernetes21

Luca Cabibbo ASW

- Esempio

 Come primo esempio, consideriamo un servizio REST hello che
ascolta al path / sulla porta 8080 e risponde con un saluto

 si può realizzare come una semplice applicazione Spring Boot

 ecco il relativo Dockerfile

 l’immagine Docker è stata salvata su Docker Hub come
aswroma3/hello-kube:2025-10 e come
aswroma3/hello-kube:latest

 discutiamo il rilascio in Kubernetes di un tale servizio
applicativo

Orchestrazione di container con Kubernetes22

Dockerfile per il servizio hello

FROM eclipse-temurin:21-jdk

ADD build/libs/hello.jar hello.jar

EXPOSE 8080

ENTRYPOINT ["java", "-Xmx128m", "-Xms128m", "-jar", "hello.jar"]

Luca Cabibbo ASW

- Pod

 Un pod è l’unità di esecuzione di un’applicazione a container

 intuitivamente, un pod rappresenta e incapsula un’istanza di
container da eseguire nel cluster – a ogni pod sono associate
delle risorse computazionali, come un indirizzo IP unico e delle
risorse di storage

 un pod è la più semplice e piccola unità che uno sviluppatore
può creare o rilasciare in Kubernetes

Orchestrazione di container con Kubernetes23

Luca Cabibbo ASW

Pod

 Ecco la specifica di un pod hello-pod (file hello-pod.yaml)

 nella specifica di un pod, è necessario far riferimento a delle
immagini Docker in un registry (che deve essere accessibile da
tutti i nodi del cluster) – non è invece possibile far riferimento a
immagini nella cache Docker oppure a dei Dockerfile

 tutte le immagini usate in questa dispensa sono disponibili su
Docker Hub

Orchestrazione di container con Kubernetes24

apiVersion: v1
kind: Pod
metadata:
name: hello-pod
labels:
app: hello

spec:
containers:
- name: hello-container
image: aswroma3/hello-kube:latest

Luca Cabibbo ASW

Kubectl

 Ecco alcuni comandi kubectl di uso generale

 kubectl create resource o kubectl create -f resource-file.yaml

 crea la risorsa specificata o le risorse del file specificato

 kubectl apply -f resource-file.yaml

 crea o aggiorna le risorse del file specificato

 kubectl delete -f resource-file.yaml

 elimina le risorse del file specificato

 kubectl get resource-type

 elenca le risorse della tipologia specificata – ad es., pods
(po), nodes (no), services (svc), …

 kubectl describe resource-type/resource-name

 fornisce informazioni sulla risorsa specificata

 kubectl delete resource-type/resource-name

 elimina la risorsa specificata

Orchestrazione di container con Kubernetes25

Luca Cabibbo ASW

Kubectl e pod

 Ecco alcuni comandi kubectl per la gestione dei pod

 kubectl apply -f hello-pod.yaml

 in questo caso, crea il pod hello-pod

 kubectl get pods [-o wide]

 elenca i pod rilasciati nel cluster [mostrando una descrizione
estesa]

 kubectl describe pods/hello-pod

 fornisce informazioni sul pod specificato – come l’immagine,
il container per il pod e il suo indirizzo IP

 è possibile accedere al pod mediante il suo indirizzo IP

 attenzione: per ora è possibile accedere a questo servizio
applicativo solo dalle macchine interne del cluster (ad es.,
da kube-1, ma non da kube-dev, che è esterno al cluster)

 kubectl delete pods/hello-pod

 elimina il pod specificato
Orchestrazione di container con Kubernetes26

Luca Cabibbo ASW

Rilascio di un pod nel cluster

Orchestrazione di container con Kubernetes27

hello-pod.yaml

Pod
name: hello-pod
labels:
- app: hello
containers:
- image:

worker node 1 (10.11.1.71)

container runtime

Pod: hello-pod-abc
(192.168.89.21)

app=hello

worker node 2 (10.11.1.72)

container runtime

worker node 3 (10.11.1.73)

container runtime

Kubernetes cluster

Luca Cabibbo ASW

Rilascio di un pod nel cluster

 Il rilascio di un pod nel cluster avviene in questo modo

 uno sviluppatore richiede (tramite kubectl) il rilascio di un pod
nel cluster

 kubectl inoltra la richiesta di creazione del pod all’API server

 l’API server chiede allo scheduler di selezionare un nodo
worker in cui creare e avviare il pod

 l’API server notifica la richiesta di creazione del pod al kubelet
del nodo worker selezionato

 il kubelet del nodo selezionato chiede al container runtime
locale di creare e avviare un nuovo container per il pod

Orchestrazione di container con Kubernetes28

Luca Cabibbo ASW

Pod con più container

 I pod possono essere usati in due modi

 pod a singolo container – è il caso più comune – in questo
caso, si può pensare a un pod come a un’entità che incapsula
un singolo container, con Kubernetes che gestisce i pod (e non
direttamente i container, che vengono invece gestiti dal
container runtime, ad es., containerd)

 pod multi-container – per eseguire più container in un pod –
questo è utile se i diversi container del pod devono essere
colocalizzati (in un singolo nodo del cluster), ad es., perché
devono condividere delle risorse (in genere, dei volumi)

 tutti i container di un pod vengono infatti rilasciati in uno
stesso nodo worker

 poiché questi container condividono l’indirizzo IP del pod,
possono comunicare facilmente tra loro (su localhost) – ma
devono comunicare con l’esterno del pod mediante porte
distinte

Orchestrazione di container con Kubernetes29

Luca Cabibbo ASW

Specifica di un pod

 La specifica di un pod (o di ogni altra risorsa Kubernetes) può
contenere numerosi campi

 la tipologia (kind) di risorsa – ad es., Pod

metadati della risorsa – tra cui il nome, il namespace e delle
etichette

 la specifica (spec) della risorsa – nel caso di un pod

 i container che compongono il pod, ciascuno con

 nome

 immagine

 porte su cui il container comunica

 variabili d’ambiente

 …

Orchestrazione di container con Kubernetes30

Luca Cabibbo ASW

Label

 I metadati di una risorsa Kubernetes possono contenere delle
etichette (zero, una o più)

 ogni etichetta (label) ha una chiave e un valore

 nell’ambito di un’applicazione, è comune associare a
ciascuna risorsa almeno un’etichetta app che specifica il
nome dell’applicazione a cui si riferisce quella risorsa

 nelle applicazioni a microservizi, oltre all’etichetta app
(uguale per tutti i microservizi) è anche comune associare a
ciascuna risorsa anche un’etichetta service che specifica il
microservizio a cui si riferisce quella risorsa – a un
microservizio possono essere associate più risorse

Orchestrazione di container con Kubernetes31

Luca Cabibbo ASW

Label

 I metadati di una risorsa Kubernetes possono contenere delle
etichette (zero, una o più)

 come discuteremo più avanti, le etichette sono importanti per
consentire la selezione delle risorse

 infatti, la selezione delle risorse avviene in genere sulla base
delle etichette – e non sulla base dei nomi delle risorse
(come si potrebbe invece pensare)

 in questa introduzione a Kubernetes, utilizziamo le sole
etichette app e, più avanti, anche service

Orchestrazione di container con Kubernetes32

Luca Cabibbo ASW

Pod – discussione

 Alcune osservazioni sui pod

 i pod (e i loro indirizzi di rete) sono effimeri – ogni volta che
viene creato (o ricreato) un pod (il che è possibile e comune),
gli viene assegnato un indirizzo di rete differente

 questo solleva il problema della comunicazione con i pod –
sia della comunicazione tra pod (all’interno del cluster) che
della comunicazione con i client finali (dall’esterno del
cluster)

 il problema della comunicazione tra e con i pod è risolto in
Kubernetes dai service (descritti più avanti)

 Kubernetes raccomanda di non creare pod direttamente

 piuttosto, consigli di crearli indirettamente mediante l’uso di
controller (descritti più avanti)

Orchestrazione di container con Kubernetes33

Luca Cabibbo ASW

- Controller

 Un controller è una risorsa Kubernetes che ha lo scopo di gestire
e controllare un gruppo di pod correlati (in genere, basati su
un’identica specifica di container)

 i controller più comuni sono quelli che consentono di gestire e
controllare un numero stabile di repliche di un pod – ne
esistono di diversi tipi

 un replica set consente di specificare il numero di repliche
desiderato di un tipo di pod

 un daemon set consente di avere esattamente una replica di
un pod per ciascun nodo worker del cluster

 i daemon set sono utili, ad es., per eseguire un agente
(demone) di monitoraggio in ciascun nodo del cluster,
oppure per la raccolta dei log del nodo

 per motivi di sicurezza, i nodi del control plane di solito
non eseguono repliche dei pod delle applicazioni

Orchestrazione di container con Kubernetes34

Luca Cabibbo ASW

Controller

 Un controller è una risorsa Kubernetes che ha lo scopo di gestire
e controllare un gruppo di pod correlati (in genere, basati su
un’identica specifica di container)

 i controller hanno lo scopo di controllare il proprio gruppo di pod
in modo attivo

 un controller non solo consente di creare un gruppo di pod,
ma anche di garantirne l’esistenza, in modo stabile

 ad es., se uno dei pod di un replica set fallisce (o se viene
eliminato), allora il pod viene rischedulato (a livello di cluster)
e riavviato

 un pod fallito di un replica set potrebbe essere riallocato
in un nodo worker diverso

 in ogni caso, ad un pod che viene ricreato viene di solito
assegnato un indirizzo di rete differente da quello del pod
che è fallito

Orchestrazione di container con Kubernetes35

Luca Cabibbo ASW

Controller

 Un controller è una risorsa Kubernetes che ha lo scopo di gestire
e controllare un gruppo di pod correlati (in genere, basati su
un’identica specifica di container)

 ulteriori tipi di controller

 un job consente di garantire che un numero specificato di
pod di un certo tipo vengano creati e terminino con successo

 uno stateful set consente di gestire applicazioni stateful

 in modo simile a un replica set, garantisce l’esistenza di
un numero desiderato di repliche di un tipo di pod

 tuttavia, in un replica set i diversi pod sono considerati
equivalenti e intercambiabili

 invece, in uno stateful set, i pod non sono intercambiabili,
ma sono ordinati e hanno un’identità persistente che
viene mantenuta nelle successive rischedulazioni dei pod
– questo è utile per pod che hanno dei volumi persistenti

Orchestrazione di container con Kubernetes36

Luca Cabibbo ASW

Replica Set

 Ecco la specifica di un replica set (file hello-rs.yaml)

Orchestrazione di container con Kubernetes37

apiVersion: apps/v1
kind: ReplicaSet
metadata:
name: hello-rs

spec:
replicas: 2
selector:
matchLabels:

app: hello
template:
metadata:

name: hello-pod
labels:
app: hello

spec:
containers:
- name: hello-container
image: aswroma3/hello-kube:latest

Luca Cabibbo ASW

Replica Set

 Nell’esempio, si noti l’uso dei seguenti campi

 il campo template definisce una specifica di pod

 il replica set si occuperà di controllare la creazione del
numero desiderato di repliche di pod basati su questo
template

 si ricordi la raccomandazione di Kubernetes di non creare
pod direttamente

 il campo replicas specifica il numero di repliche desiderato

 il campo selector specifica il criterio di selezione (basato su
etichette) dei pod che fanno parte di questo replica set

Orchestrazione di container con Kubernetes38

Luca Cabibbo ASW

Replica Set

Orchestrazione di container con Kubernetes39

hello-rs.yaml

Pod Template
name: hello-pod
labels:
- app: hello
containers:
- image:

ReplicaSet
name: hello-rs
replicas: 2
selector:

app=hello

worker node 1 (10.11.1.71)

container runtime

Pod: hello-rs-ab
(192.168.89.21)

app=hello

worker node 2 (10.11.1.72)

container runtime

worker node 3 (10.11.1.73)

container runtime

Pod: hello-rs-xy
(192.168.79.14)

app=hello

ReplicaSet: hello-rs
replicas: 2

selector: app=hello
Kubernetes cluster

Luca Cabibbo ASW

- Deployment

 Un deployment è un controller Kubernetes di alto livello che
consente una specifica dichiarativa di pod e replica set

 la specifica di un deployment è simile a quella di un replica set

 in pratica, Kubernetes gestisce un deployment mediante la
creazione di un replica set per il deployment

 Kubernetes raccomanda anche di non creare replica set
direttamente

 piuttosto, consiglia di crearli indirettamente mediante l’uso di
deployment

 inoltre, con un deployment è semplice effettuare la scalatura (in
alto o in basso) di un insieme di pod, nonché di effettuarne un
rolling update o un rollback

Orchestrazione di container con Kubernetes40

Luca Cabibbo ASW

Deployment

 Ecco la specifica di un deployment (file hello-deployment.yaml)

Orchestrazione di container con Kubernetes41

apiVersion: apps/v1
kind: Deployment
metadata:
name: hello-deploy

spec:
replicas: 2
selector:
matchLabels:

app: hello
template:
metadata:

name: hello-pod
labels:
app: hello

spec:
containers:
- name: hello-container
image: aswroma3/hello-kube:latest

Luca Cabibbo ASW

Deployment

Orchestrazione di container con Kubernetes42

hello-deployment.yaml

Pod Template
name: hello-pod
labels:
- app: hello
containers:
- image:

Deployment
name: hello-dp
replicas: 2
selector:

app=hello

worker node 1 (10.11.1.71)

container runtime

Pod: hello-dp-12-ab
(192.168.89.21)

app=hello

worker node 2 (10.11.1.72)

container runtime

worker node 3 (10.11.1.73)

container runtime

Pod: hello-dp-12-xy
(192.168.79.14)

app=hello

ReplicaSet: hello-dp-12
replicas: 2

selector: app=hello

Deployment: hello-dp

Kubernetes cluster

Luca Cabibbo ASW

- Un esperimento

 Prima di andare avanti, facciamo questo esperimento

 avviamo l’applicazione con
kubectl apply -f hello-deployment.yaml

 eseguiamo il comando kubectl get all -o wide

 a questo punto, dovremmo vedere le istanze di risorse
mostrate nella figura precedente (anche se con nomi diversi)

 un deployment, un replica set e due pod

 “uccidiamo” ora uno dei pod, con il comando
kubectl delete pod/nome-di-uno-dei-pod

 eseguiamo di nuovo il comando kubectl get all -o wide

 a questo punto, dovremmo vedere ancora un deployment,
un replica set e due pod

 uno dei pod è però diverso da quello che è stato “ucciso”
– inoltre, il suo indirizzo IP è probabilmente diverso da
quello del pod che è stato “ucciso”

Orchestrazione di container con Kubernetes43

Luca Cabibbo ASW

Un esperimento

 Questo esperimento consente di comprendere una frase scritta in
precedenza

 “quando viene rilasciata una risorsa, Kubernetes inizia a
lavorare costantemente per garantire l’esistenza delle
corrispondenti istanze di risorsa”

 quando rilasciamo un controller (come un replica set o un
deployment), Kubernetes si occupa non solo di creare le risorse
corrispondenti – ma si occupa anche di monitorarle e, nel caso
di un loro fallimento, di ricrearle – sulla base delle specifiche
fornite

Orchestrazione di container con Kubernetes44

Luca Cabibbo ASW

- Service (prima parte)

 Consideriamo ora il problema della comunicazione tra e con i pod

 un primo problema da affrontare è che i pod (e i loro indirizzi di
rete) sono effimeri – ogni volta che viene creato (o ricreato) un
pod (il che è possibile e comune), gli viene assegnato un
indirizzo di rete differente

 una soluzione a questo problema è offerta dai service – un’altra
astrazione di Kubernetes, rappresentata da un’altra tipologia di
risorsa

Orchestrazione di container con Kubernetes45

Luca Cabibbo ASW

Service

 Un service è una risorsa che definisce un punto di accesso
costante a un gruppo di pod che offrono uno stesso servizio
applicativo

 ogni service ha un nome, un tipo (discusso più avanti), un
indirizzo IP (chiamato cluster IP, un indirizzo IP nella service
network) e una porta che non cambiano mai durante l’esistenza
del service

 non cambiano nemmeno se, nel corso del tempo, cambiano
le istanze del gruppo di pod (istanze di container) a cui il
service si riferisce

 attenzione: la locazione del service cambia se il service
viene arrestato e ricreato

 in particolare, è utile e comune creare dei service in
corrispondenza ai deployment – per definire un punto di
accesso unico alle repliche di pod specificate da un deployment

Orchestrazione di container con Kubernetes46

Luca Cabibbo ASW

Service

 Un service è una risorsa che definisce un punto di accesso
costante a un gruppo di pod che offrono uno stesso servizio
applicativo

 inoltre, usando un service, un pod può comunicare con un altro
pod dell’applicazione tramite il suo cluster IP (che è stabile) – o,
ancora più semplicemente, tramite il nome del service
associato al pod (grazie al DNS del cluster)

 ogni accesso fatto mediante l’indirizzo IP (o il nome) e la
porta del service verrà inoltrata (tramite kube-proxy) a uno
dei pod del service – in genere, il service opera anche da
load balancer nei confronti dei suoi pod

Orchestrazione di container con Kubernetes47

Luca Cabibbo ASW

Service

 Ecco la specifica di un service (file hello-service-clusterip.yaml)

 la specifica del deployment è rimasta invariata

Orchestrazione di container con Kubernetes48

apiVersion: apps/v1
kind: Deployment
metadata:
name: hello-deploy

... come prima ...

apiVersion: v1
kind: Service
metadata:
name: hello-svc

spec:
type: ClusterIP
selector:
app: hello

ports:
- port: 8080
targetPort: 8080

Luca Cabibbo ASW

Service

 Nella specifica di un service

 il campo type indica il tipo di service (i tipi di service sono
discussi più avanti) – il default è ClusterIP

 il selettore consente di selezionare (tramite etichette) i pod a cui
è associato il service

 inoltre, il campo port indica la porta su cui va esposto il service,
mentre targetPort indica la porta di interesse esposta dal pod

Orchestrazione di container con Kubernetes49

Luca Cabibbo ASW

Service

 Ecco alcuni comandi kubectl per la gestione dei service

 kubectl apply -f hello-service.yaml

 in questo caso, crea il deployment (con il suo replica set e i
suoi pod) e il service hello-svc

 kubectl get services oppure kubectl get svc

 elenca i service del cluster

 kubectl describe svc/hello-svc

 fornisce informazioni sul service specificato – come il suo
tipo (in questo caso, Cluster IP), il suo indirizzo IP, la sua
porta, gli endpoint dei pod a cui è associato

 in questo caso, è possibile accedere al service mediante il
suo indirizzo IP (ma sempre solo dalle macchine interne del
cluster)

 kubectl delete svc/hello-svc

 elimina il service specificato
Orchestrazione di container con Kubernetes50

Luca Cabibbo ASW

Deployment e Service

Orchestrazione di container con Kubernetes51

hello-service-clusterip.yaml

Pod Template
name: hello-pod
labels:
- app: hello
containers:
- image:

Deployment
name: hello-dp
replicas: 2
selector:

app=hello

Service
name: hello-svc
type: ClusterIP
selector:

app=hello
ports:

8080 → 8080

Luca Cabibbo ASW

Deployment e Service

Orchestrazione di container con Kubernetes52

worker node 1 (10.11.1.71)

container runtime

worker node 2 (10.11.1.72)

container runtime

worker node 3 (10.11.1.73)

container runtime

ReplicaSet: hello-dp-12
replicas: 2

selector: app=hello

Deployment: hello-dp

Service: hello-svc (ClusterIP)
10.109.64.82:8080
selector: app=hello

Pod: hello-dp-12-ab
(192.168.89.21)

app=hello

8080
Pod: hello-dp-12-xy

(192.168.79.14)

app=hello

8080

Kubernetes cluster

Luca Cabibbo ASW

- Service (seconda parte)

 Consideriamo ancora il problema della comunicazione tra e con i
pod

 un secondo problema da affrontare è che gli indirizzi di rete
assegnati ai pod appartengono alla pod network e quelli
assegnati ai service appartengono alla service network

 queste reti sono però entrambe reti private del cluster, e
pertanto rimane il problema dell’accesso ai pod da parte dei
client esterni al cluster

 i service offrono anche una soluzione a questo problema

Orchestrazione di container con Kubernetes53

Luca Cabibbo ASW

Service accessibili dai pod interni

 Kubernetes fornisce diversi tipi di service

 un primo tipo (ClusterIP) sostiene direttamente solo la
comunicazione tra i pod interni al cluster

 ClusterIP – associa al service un indirizzo IP interno al
cluster (cluster IP) – il service agisce da load balancer tra i
pod associati al service

 questo tipo di service è utile per semplificare la
comunicazione interna tra pod

 un’alternativa è usare un servizio di service discovery
applicativo come Consul oppure il servizio di service
discovery di Kubernetes (discusso più avanti)

Orchestrazione di container con Kubernetes54

Luca Cabibbo ASW

Service accessibili dai client esterni

 Kubernetes fornisce diversi tipi di service

 altri tipi di service sono accessibili anche da client esterni al
cluster (ad es., dalla VM kube-dev)

 NodePort – estende ClusterIP, allocando (come suggerisce
il nome) anche una porta per il service sui nodi del cluster

 in questo modo, ogni nodo del cluster è in grado di
accettare richieste sulla porta associata al service e di
inoltrarle al service (“ingress routing mesh”)

 ha degli inconvenienti (ad es., la porta deve essere nel
range 30000-32767, si può avere un solo servizio per
porta), ed è sconsigliato in produzione – ma è utile
durante lo sviluppo

Orchestrazione di container con Kubernetes55

Luca Cabibbo ASW

Service accessibili dai client esterni

 Kubernetes fornisce diversi tipi di service

 altri tipi di service sono accessibili anche da client esterni al
cluster (ad es., dalla VM kube-dev)

 LoadBalancer – estende NodePort, ed espone il servizio
esternamente usando un load balancer esterno – si noti che
Kubernetes non offre direttamente un servizio di questo tipo,
ma può chiedere al provider di cloud in cui viene eseguito il
cluster Kubernetes di allocare un load balancer esterno e di
effettuare il routing verso il service

 è adatto ad esporre un servizio all’esterno in produzione,
ed è un modo standard di esporre un servizio su Internet

Orchestrazione di container con Kubernetes56

Luca Cabibbo ASW

NodePort

 Ecco la specifica di un service di tipo NodePort
(file hello-service-nodeport.yaml)

 la specifica del deployment è rimasta invariata

 il campo nodePort (opzionale) indica la porta esterna per il
service – se assente, viene assegnata in modo casuale
nell’intervallo (di solito) 30000-32767

Orchestrazione di container con Kubernetes57

apiVersion: v1
kind: Service
metadata:
name: hello-svc

spec:
type: NodePort
selector:
app: hello

ports:
- port: 8080
targetPort: 8080
nodePort: 32081

Luca Cabibbo ASW

NodePort

Orchestrazione di container con Kubernetes58

hello-service-nodeport.yaml

Pod Template
name: hello-pod
labels:
- app: hello
containers:
- image:

Deployment
name: hello-dp
replicas: 2
selector:

app=hello

Service
name: hello-svc
type: NodePort
selector:

app=hello
ports:

8080 → 8080
nodePort: 32081

Luca Cabibbo ASW

NodePort

Orchestrazione di container con Kubernetes59

worker node 1 (10.11.1.71)

container runtime

worker node 2 (10.11.1.72)

container runtime

worker node 3 (10.11.1.73)

container runtime

ReplicaSet: hello-dp-12
replicas: 2

selector: app=hello

Deployment: hello-dp

Service: hello-svc (NodePort)
32081

selector: app=hello

Pod: hello-dp-12-ab
(192.168.89.21)

app=hello

8080
Pod: hello-dp-12-xy

(192.168.79.14)

app=hello

8080

Kubernetes cluster

32081 32081 32081

32081

Luca Cabibbo ASW

NodePort

 Ecco un client minimale basato su curl

 il client accede al service sulla porta 32081

 supponiamo che il DNS usato dal client (oppure il suo file
/etc/hosts) associ il nome kube-node a qualunque nodo del
cluster Kubernetes

 nel caso in cui la porta associata al service non sia nota, si può
usare kubectl per determinarla

Orchestrazione di container con Kubernetes60

curl kube-node:32081

SERVICE_PORT=$(kubectl get svc/hello-svc \
-o go-template='{{(index .spec.ports 0).nodePort}}')

curl kube-node:${SERVICE_PORT}

Luca Cabibbo ASW

- Un altro esperimento

 Prima di andare avanti, facciamo questo esperimento

 avviamo l’applicazione con
kubectl apply -f hello-service-nodeport.yaml

 eseguiamo il comando kubectl get all -o wide

 a questo punto, dovremmo vedere le istanze di risorse
mostrate nella figura precedente (anche se con nomi diversi)

 tra di queste, il service hello-svc, di tipo NodePort, a cui è
associato un indirizzo IP (cluster IP) e una porta

 “uccidiamo” uno dei pod, come nell’esperimento precedente

 eseguiamo di nuovo il comando kubectl get all -o wide

 a questo punto, dovremmo vedere che non sono cambiati né
l’indirizzo IP né la porta associati al service hello-svc

 infatti, un service definisce un punto di accesso costante
a un gruppo di pod per un servizio applicativo – mentre la
composizione di questo gruppo può variare nel tempo

Orchestrazione di container con Kubernetes61

Luca Cabibbo ASW

- Ingress

 Un ingress è una risorsa per effettuare il routing di richieste HTTP
e HTTPS indirizzate ai nodi del cluster verso service interni al
cluster

 si tratta di una modalità aggiuntiva per rendere uno o più
service (di tipo NodePort o LoadBalancer) accessibili a client
esterni al cluster

 non solo con riferimento a una porta, ma anche a un
hostname oppure a un path

 l’uso degli ingress richiede l’installazione nel cluster di un
ingress controller (come add-on)

 nell’ambiente kube-cluster viene utilizzato NGINX Ingress
Controller – è configurato per ascoltare richieste HTTP sulla
porta 31080 di tutte le macchine (con alias kube-cluster) ma
anche sulla porta 80 dei nodi worker (con alias kube-node)

Orchestrazione di container con Kubernetes62

Luca Cabibbo ASW

Ingress

 Ecco la specifica di un ingress
(file hello-ingress.yaml)

 il service hello-svc viene esposto su http://hello.aswroma3.it/ –
sulla porta associata all’ingress controller, nel nostro caso 80

Orchestrazione di container con Kubernetes63

apiVersion: v1
kind: Service
metadata:
name: hello-svc

spec:
type: NodePort
selector:
app: hello

ports:
- port: 8080
targetPort: 8080
nodePort: 32081

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: hello-ing

spec:
ingressClassName: nginx
rules:
- host: hello.aswroma3.it
http:

paths:
- pathType: Prefix
path: /
backend:
service:

name: hello-svc
port:
number: 8080

Luca Cabibbo ASW

Ingress

 Un ingress può specificare più regole di routing

 ciascuna di queste regole può associare un service (campi
service.name e service.port.number) a un URI composto dal
nome di un host (campo host) e da un path (campo path)

 nell’esempio, il service hello-svc (su 8080) è esposto
sull’URI http://hello.aswroma3.it/ (su 80)

Orchestrazione di container con Kubernetes64

Luca Cabibbo ASW

Ingress

 Un ingress può specificare più regole di routing

 ciascuna di queste regole può associare un service (campi
service.name e service.port.number) a un URI composto dal
nome di un host (campo host) e da un path (campo path)

 inoltre

 il campo host è opzionale, e può essere specificato in modo
esatto (hello.aswroma3.it) oppure con delle wildcard
(*.hello.com)

 il campo path può essere specificato in modo esatto
(pathType: Exact) oppure come un prefisso (pathType:
Prefix)

 è possibile la riscrittura dell’URI della richiesta

 è possibile effettuare il “canary” di alcune richieste su servizi
differenti

Orchestrazione di container con Kubernetes65

Luca Cabibbo ASW

Ingress

 Per accedere effettivamente a un service mediante un ingress
dall’esterno del cluster, è inoltre necessario che il nome dell’host
specificato sia registrato nel DNS che serve il client esterno – e
che il DNS associ questo nome ai nodi worker del cluster

 per fare degli esperimenti

 è possibile associare l’host all’indirizzo IP dei nodi worker del
cluster nel file /etc/hosts del client, e poi usare

 oppure si può usare curl con l’opzione --connect-to (redirige
una richiesta da una coppia host:porta a un’altra)

 oppure si può usare curl indicando un header di tipo Host
(presenta la richiesta come se rivolta all’host specificato)

Orchestrazione di container con Kubernetes66

curl http://hello.aswroma3.it \
--connect-to hello.aswroma3.it:80:kube-node:80

curl kube-node --header "Host: hello.aswroma3.it"

curl http://hello.aswroma3.it

Luca Cabibbo ASW

Ingress

Orchestrazione di container con Kubernetes67

hello-ingress.yaml

Pod Template
name: hello-pod
labels:
- app: hello
containers:
- image:

Deployment
name: hello-dp
replicas: 2
selector:

app=hello

Service
name: hello-svc
type: NodePort
selector:

app=hello
ports:

8080 → 8080

Ingress
name: hello-ing
rules:
- hello/ → hello-svc:8080

Luca Cabibbo ASW

Ingress

Orchestrazione di container con Kubernetes68

worker node 1 (10.11.1.71)

container runtime

worker node 2 (10.11.1.72)

container runtime

worker node 3 (10.11.1.73)

container runtime

ReplicaSet: hello-dp-12
replicas: 2

selector: app=hello

Deployment: hello-dp

Service: hello-svc (NodePort)
32081

selector: app=hello

Pod: hello-dp-12-ab
(192.168.89.21)

app=hello

8080
Pod: hello-dp-12-xy

(192.168.79.14)

app=hello

8080

Kubernetes cluster

Ingress: hello-ing
hello/ → hello-svc:8080

http://hello/

http://hello/ http://hello/ http://hello/

Luca Cabibbo ASW

Ingress

 Ecco un client minimale basato su curl

 il client accede al service sull’host hello.aswroma3.it

 supponiamo che il DNS usato dal client (oppure il suo file
/etc/hosts) associ hello a qualunque nodo worker del cluster
Kubernetes

 nel caso in cui l’ingress controller sia associato a una porta
diversa dalla porta 80 – ad es., la porta 31080

 nel caso in cui l’host hello non sia registrato nel DNS, per fare
degli esperimenti veloci nel cluster kube-cluster

 oppure anche

Orchestrazione di container con Kubernetes69

curl hello.aswroma3.it

curl hello.aswroma3.it:31080

curl hello.aswroma3.it --connect-to hello.aswroma3.it:80:kube-node:80

curl kube-node --header "Host: hello.aswroma3.it"

Luca Cabibbo ASW

- Namespace

 Un namespace consente di associare una portata (scope) a
ciascuna risorsa

 utile quando il cluster viene utilizzato per eseguire più
applicazioni, oppure è condiviso tra più utenti

 ovvero, quando è possibile che ci siano sovrapposizioni di
nomi tra le risorse di applicazioni o utenti diversi

 i namespace consentono di separare le risorse in “gruppi”
distinti – nonché di operare all’interno di un solo “gruppo”
alla volta

 in pratica, i namespace sono un modo per gestire più cluster
virtuali in un unico cluster fisico

 se per una risorsa non viene specificato nessun namespace,
allora quella risorsa viene allocata nel namespace default

 nota: i namespace di Kubernetes sono una cosa diversa dai
namespace di Linux (usati, ad es., da runc e containerd)

Orchestrazione di container con Kubernetes70

Luca Cabibbo ASW

Namespace

 Un primo modo di utilizzare i namespace (file hello-
namespace.yaml)

 scrivere la specifica di un namespace

 nelle altre specifiche, indicare esplicitamente (tra i metadati) il
namespace da usare per ciascuna risorsa

Orchestrazione di container con Kubernetes71

apiVersion: v1
kind: Namespace
metadata:
name: hello

apiVersion: apps/v1
kind: Deployment
metadata:
name: hello-deploy
namespace: hello

... come prima ...

apiVersion: v1
kind: Service
metadata:
name: hello-svc
namespace: hello

... come prima ...

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: hello-ing
namespace: hello

... come prima ...

Luca Cabibbo ASW

Namespace

Orchestrazione di container con Kubernetes72

hello-namespace.yaml

Pod Template
name: hello-pod
labels:
- app: hello
containers:
- image:

Deployment
name: hello-dp
ns: hello
replicas: 2
selector:

app=hello

Service
name: hello-svc
ns: hello
type: NodePort
selector:

app=hello
ports:

8080 → 8080

Ingress
name: hello-ing
ns: hello
rules:
- hello/ → hello-svc:8080

Namespace
name: hello

Luca Cabibbo ASW

Namespace

Orchestrazione di container con Kubernetes73

worker node 1 (10.11.1.71)

container runtime

worker node 2 (10.11.1.72)

container runtime

worker node 3 (10.11.1.73)

container runtime

ReplicaSet: hello-dp-12
replicas: 2

selector: app=hello

Deployment: hello-dp

Service: hello-svc (NodePort)
32081

selector: app=hello

Pod: hello-dp-12-ab
(192.168.89.21)

app=hello

8080
Pod: hello-dp-12-xy

(192.168.79.14)

app=hello

8080

Kubernetes cluster

Ingress: hello-ing
hello/ → hello-svc:8080

http://hello/

http://hello/ http://hello/ http://hello/

Namespace: hello

Luca Cabibbo ASW

Namespace

 Ecco alcuni comandi kubectl per la gestione dei namespace

 kubectl create namespace hello

 crea il namespace di nome hello

 kubectl get namespaces oppure kubectl get ns

 elenca tutti i namespace

 kubectl get pods --namespace hello oppure
kubectl get pods -n hello

 elenca tutti i pod del namespace specificato

 kubectl get pods --all-namespaces

 elenca tutti i pod di tutti i namespace

 kubectl get pods

 elenca tutti i pod del namespace default

 kubectl delete namespace hello

 cancella il namespace hello (con tutte le sue risorse)

Orchestrazione di container con Kubernetes74

Luca Cabibbo ASW

Namespace

 Un secondo modo di utilizzare i namespace

 usare l’ultima specifica mostrata in precedenza – senza la
risorsa namespace né l’indicazione del namespace tra i
metadati delle altre risorse

 usare il seguente script per avviare l’applicazione – l’opzione -n
consente di creare le risorse del file nel namespace specificato

 kubectl create namespace hello

 kubectl apply -f hello-application.yaml -n hello

 usare il seguente script per arrestare l’applicazione

 kubectl delete -f hello-application.yaml -n hello

 kubectl delete namespace hello

 questo modo di procedere consente di mantenere le specifiche
delle risorse indipendenti dai namespace utilizzati per il loro
rilascio

Orchestrazione di container con Kubernetes75

Luca Cabibbo ASW

- Probe

 Kubernetes (tramite kubelet) usa i probe (“sonda”) per verificare lo
stato di salute dei pod

 i probe sono in qualche modo simili ai controlli sullo stato di
salute dei container che con Docker sono abilitati dall’istruzione
HEALTHCHECK nei Dockerfile

 è però utile sapere che eventuali istruzioni HEALTHCHECK nei
Dockerfile sono ignorate da Kubernetes – al loro posto vanno
utilizzati i probe

Orchestrazione di container con Kubernetes76

Luca Cabibbo ASW

Probe

 I probe possono essere definiti nella specifica di un pod

 ogni probe ha dei parametri propri

 il caso più semplice è un probe è basato su una richiesta HTTP
GET su una porta e un path del pod

 il pod “passa” (supera) il check se la risposta ha un codice
2xx o 3xx, e non lo passa con un codice di errore 4xx e 5xx

Orchestrazione di container con Kubernetes77

...
template:
...
spec:

containers:
- image: aswroma3/hello-kube:latest
livenessProbe:
...

readinessProbe:
...

Luca Cabibbo ASW

Probe

 Ci sono diversi tipi di probe

 un liveness probe consente di verificare periodicamente lo stato
di salute di un pod

 se il check fallisce, il pod viene ucciso e riavviato

 in questo caso, lo stato di salute dell’applicazione nel pod
viene verificato ogni 5 secondi – e sono ammessi al più 3
fallimenti consecutivi – ma aspettando prima 2 minuti per
l’avvio del pod

 è utile, ad es., se il pod può andare in loop o essere
coinvolto in un deadlock, senza però andare in crash

Orchestrazione di container con Kubernetes78

livenessProbe:
httpGet:

path: /actuator/health
port: 8080

periodSeconds: 5
failureThreshold: 3
initialDelaySeconds: 120

Luca Cabibbo ASW

Probe

 Ci sono diversi tipi di probe

 anche un readiness probe consente di verificare
periodicamente lo stato di salute di un pod

 tuttavia, se il check fallisce, Kubernetes si limita a non
inoltrare richieste al pod – fino a quando il pod non tornerà a
passerà il check

 è utile, ad es., quando il tempo di avvio di un pod non è
breve – in particolare, durante i rolling update

Orchestrazione di container con Kubernetes79

readinessProbe:
httpGet:

path: /actuator/health
port: 8080

periodSeconds: 10

Luca Cabibbo ASW

Probe

 Ci sono diversi tipi di probe

 uno startup probe è utile per i pod che richiedono un tempo alto
di avvio ed inizializzazione

 in questo caso, l’applicazione nel pod deve avere un tempo
massimo di avvio di 10*30=300 secondi (5 minuti)

 altrimenti, il pod viene ucciso e riavviato

 questo probe viene usato solo durante l’avvio del pod – nel
frattempo gli altri tipi di probe sono disabilitati

 utile per avere probe a granularità temporale differente – più
lunga per lo startup, più breve per liveness e readiness

Orchestrazione di container con Kubernetes80

startupProbe:
httpGet:

path: /actuator/health
port: 8080

periodSeconds: 10
failureThreshold: 30

Luca Cabibbo ASW

- Architettura dell’applicazione hello

 Per riassumere, la seguente figura descrive l’architettura
dell’applicazione hello, rappresentando le risorse Kubernetes
utilizzate

Orchestrazione di container con Kubernetes81

http://hello hello-svc hello-deploy

hello

Luca Cabibbo ASW

* Orchestrazione con Kubernetes

 Discutiamo ora il rilascio su Kubernetes di un’applicazione multi-
servizi e multi-container

 come applicazione di esempio, consideriamo di nuovo
l’applicazione sentence per generare frasi in modo casuale

 questa applicazione è basata su un servizio principale sentence
che utilizza degli ulteriori servizi per generare parole di tipo
diverso (subject, verb e object) e un API gateway api-gateway

 questa applicazione è stata inizialmente presentata nella
dispensa su Spring Cloud – e poi ripresa nella dispensa
sull’esecuzione di applicazioni Spring con Docker (che usiamo
come punto di partenza)

Orchestrazione di container con Kubernetes82

subject

verb

object

sentenceapi-gateway

Luca Cabibbo ASW

Un’applicazione per frasi casuali

 Per rilasciare l’applicazione sentence con Kubernetes, possiamo
usare

 per il servizio applicativo principale sentence

 un’immagine di container sentence-sentence-kube:latest
(sentence-sentence-kube:2025-10)

 un deployment – per allocare più pod

 un service sentence – di tipo ClusterIP

 per gli ulteriori servizi applicativi subject, verb e object

 un’ immagine di container sentence-word-kube:latest
(sentence-word-kube:2025-10), con tre profili subject, verb e
object

 un deployment per ciascun tipo di parola

 un service per ciascun tipo di parola, di tipo ClusterIP

Orchestrazione di container con Kubernetes83

Luca Cabibbo ASW

Un’applicazione per frasi casuali

 Per rilasciare l’applicazione sentence con Kubernetes, possiamo
usare

 per l’API gateway apigateway

 un’immagine di container sentence-apigateway-kube:latest
(sentence-apigateway-kube:2025-10)

 un deployment – per allocare più pod

 un service apigateway di tipo NodePort – esposto mediante
un ingress su http://sentence.aswroma3.it/, per effettuare il
routing delle richieste dei client verso il servizio richiesto

 inoltre, per la comunicazione tra i servizi utilizziamo il servizio di
service discovery di Kubernetes

 in alternativa, è possibile usare Consul

 oppure si potrebbe usare il DNS fornito da Kubernetes (ma
in questo caso l’implementazione richiesta è leggermente
differente, ed anche il comportamento è differente)

Orchestrazione di container con Kubernetes84

Luca Cabibbo ASW

Architettura dell’applicazione sentence

Orchestrazione di container con Kubernetes85

http://sentence

sentence sentence

subject subject

verb verb

object object

system
discovery

sentence

apigateway apigateway

Luca Cabibbo ASW

Modifiche alle applicazioni

 Rispetto a quanto visto nella dispensa sull’esecuzione di
applicazioni Spring con Docker, i nostri servizi applicativi vanno
configurati come segue (il codice non va modificato)

 la configurazione di tutte le applicazioni va modificata come
segue

 va rimossa la dipendenza starter per Consul (che non viene
più usato)

 al suo posto, va utilizzata la dipendenza spring-cloud-starter-
kubernetes-client-loadbalancer

 dalla configurazione (file application.properties) va rimossa
la sezione per Consul (si può anche lasciare, perché
comunque viene ignorata)

 nel nostro esempio, non è invece necessaria nessuna
configurazione per il servizio di service discovery di
Kubernetes

Orchestrazione di container con Kubernetes86

Luca Cabibbo ASW

Modifiche alle applicazioni

 Rispetto a quanto visto nella dispensa sull’esecuzione di
applicazioni Spring con Docker, i nostri servizi applicativi vanno
configurati come segue (il codice non va modificato)

 nel servizio sentence, i client REST possono continuare a fare
riferimento alle diverse istanze per il servizio delle parole
utilizzando gli URI http://subject, http://verb e http://object – così
come si faceva usando Consul per la service discovery

 se anziché il servizio di service discovery di Kubernetes si
volesse invece basare la comunicazione tra servizi sul DNS
di Kubernetes, si dovrebbero però utilizzare gli URI
http://subject:8080, http://verb:8080 e http://object:8080

Orchestrazione di container con Kubernetes87

Luca Cabibbo ASW

Modifiche alle applicazioni

 Rispetto a quanto visto nella dispensa sull’esecuzione di
applicazioni Spring con Docker, i nostri servizi applicativi vanno
configurati come segue (il codice non va modificato)

 nel servizio apigateway, nemmeno la configurazione dell’API
gateway e delle sue rotte va modificata

 se invece si volesse basare la comunicazione sul DNS di
Kubernetes, andrebbero però cambiati gli URI usati nelle
diverse rotte – ad es., da lb://sentence a
http://sentence:8080

Orchestrazione di container con Kubernetes88

Luca Cabibbo ASW

Dockerfile

 Per ciascuno dei servizi bisogna definire un Dockerfile

 come esempio, questo è il Dockerfile per il servizio sentence

 l’applicazione Spring per il servizio sentence viene associata a
una porta nota (del container, non dell’host) – ad es., 8080

 i Dockerfile per gli altri servizi sono simili

 le immagini Docker di interesse per questa applicazione sono
state create e salvate su Docker Hub

 per farlo, si può utilizzare anche Docker Compose

Orchestrazione di container con Kubernetes89

Dockerfile per il servizio sentence

FROM eclipse-temurin:21-jdk

ADD build/libs/sentence.jar sentence.jar

EXPOSE 8080

ENTRYPOINT ["java", "-Xmx128m", "-Xms128m", "-jar", "sentence.jar"]

Luca Cabibbo ASW

Specifica dell’applicazione

 Ecco il file sentence-application.yaml per l’applicazione sentence

 pod template e deployment per le parole

 analogamente per verb e object
Orchestrazione di container con Kubernetes90

apiVersion: apps/v1
kind: Deployment
metadata:
name: subject

spec:
replicas: 2
selector:
matchLabels:

app: sentence
service: subject

template:
metadata:

labels:
app: sentence
service: subject

spec:
containers:
- name: subject-container
image: aswroma3/sentence-word-kube:latest
env:
- name: SPRING_PROFILES_ACTIVE
value: subject

ports:
- containerPort: 8080

Luca Cabibbo ASW

Specifica dell’applicazione

 Ecco il file sentence-application.yaml per l’applicazione sentence

 pod template e deployment per le frasi

Orchestrazione di container con Kubernetes91

apiVersion: apps/v1
kind: Deployment
metadata:
name: sentence

spec:
replicas: 2
selector:
matchLabels:

app: sentence
service: sentence

template:
metadata:

labels:
app: sentence
service: sentence

spec:
containers:
- name: sentence-container
image: aswroma3/sentence-sentence-kube:latest
ports:
- containerPort: 8080

Luca Cabibbo ASW

Specifica dell’applicazione

 Ecco il file sentence-application.yaml per l’applicazione sentence

 pod template e deployment per l’API gateway

Orchestrazione di container con Kubernetes92

apiVersion: apps/v1
kind: Deployment
metadata:
name: apigateway

spec:
replicas: 2
selector:
matchLabels:

app: sentence
service: apigateway

template:
metadata:

labels:
app: sentence
service: apigateway

spec:
containers:
- name: apigateway-container
image: aswroma3/sentence-apigateway-kube:latest
ports:
- containerPort: 8080

Luca Cabibbo ASW

Specifica dell’applicazione

 Ecco il file sentence-application.yaml per l’applicazione sentence

 service per le parole

 analogamente per verb e object

Orchestrazione di container con Kubernetes93

apiVersion: v1
kind: Service
metadata:
name: subject

spec:
selector:
app: sentence
service: subject

ports:
- protocol: TCP
port: 8080
targetPort: 8080

Luca Cabibbo ASW

Specifica dell’applicazione

 Ecco il file sentence-application.yaml per l’applicazione sentence

 service per le frasi e per l’API gateway

Orchestrazione di container con Kubernetes94

apiVersion: v1
kind: Service
metadata:
name: sentence

spec:
selector:
app: sentence
service: sentence

ports:
- protocol: TCP
port: 8080
targetPort: 8080

apiVersion: v1
kind: Service
metadata:
name: apigateway

spec:
selector:
app: sentence
service: apigateway

type: NodePort
ports:
- protocol: TCP
port: 8080
targetPort: 8080

nodePort: 32082

Luca Cabibbo ASW

Specifica dell’applicazione

 Ecco il file sentence-application.yaml per l’applicazione sentence

 ingress per l’API gateway –
è il punto di ingresso
dell’applicazione

Orchestrazione di container con Kubernetes95

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: sentence

spec:
ingressClassName: nginx
rules:
- host: sentence.aswroma3.it
http:

paths:
- pathType: Prefix
path: /
backend:
service:

name: apigateway
port:
number: 8080

Luca Cabibbo ASW

Specifica dell’applicazione

 Ecco il file sentence-application.yaml per l’applicazione sentence

 per rendere visibile il servizio di service discovery ai servizi
dell’applicazione, utilizziamo anche le seguenti regole per la
sicurezza (attenzione, sono molto permissive)

Orchestrazione di container con Kubernetes96

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

name: namespace-reader
rules:

- apiGroups: [""]
resources: ["configmaps", "pods",

"services", "endpoints",
"secrets"]

verbs: ["get", "list", "watch"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: namespace-reader-binding
subjects:
- kind: ServiceAccount

name: default
apiGroup: ""

roleRef:
kind: Role
name: namespace-reader
apiGroup: ""

Luca Cabibbo ASW

Avvio, accesso e arresto dell’applicazione

 Per avviare l’applicazione

 kubectl create namespace sentence

 kubectl apply -f sentence-application.yaml -n sentence

 Per accedere all’applicazione nel cluster kube-cluster

 curl sentence.aswroma3.it
--connect-to sentence.aswroma3.it:80:kube-node:80

oppure

 curl kube-node --header "Host: sentence.aswroma3.it"

 Per arrestare l’applicazione

 kubectl delete -f sentence-application.yaml -n sentence

 kubectl delete namespace sentence

Orchestrazione di container con Kubernetes97

Luca Cabibbo ASW

Architettura dell’applicazione sentence

Orchestrazione di container con Kubernetes98

http://sentence

sentence sentence

subject subject

verb verb

object object

system
discovery

sentence

apigateway apigateway

Luca Cabibbo ASW

- Rilascio su AWS

 Discutiamo ora (in modo semplificato) come rilasciare
l’applicazione sentence a container su AWS

 creiamo un cluster Kubernetes utilizzando il servizio
completamente gestito Elastic Kubernetes Service (EKS)

 installiamo e configuriamo nel cluster un ingress controller – ad
es., Ingress-NGINX Controller (è diverso da NGINX Ingress
Controller usato nell’ambiente kube-cluster, ma le
configurazioni sono compatibili)

 in corrispondenza, EKS crea automaticamente una nuova
istanza di Elastic Load Balancer (ELB) associata all’ingress
controller e gli assegna anche un indirizzo IP esterno
(visibile attraverso la dashboard di AWS) – ad es. xyz.eu-
west-1.elb.amazonaws.com

Orchestrazione di container con Kubernetes99

Luca Cabibbo ASW

Rilascio su AWS

 Discutiamo ora (in modo semplificato) come rilasciare
l’applicazione sentence a container su AWS

 possiamo usare una configurazione di deployment per
l’applicazione identica a quella vista – ed esponiamo
l’applicazione mediante un ingress, ad es., sull’host
sentence.aswroma3.it

 in effetti, potrebbe essere utile esporre verso l’esterno l’API
gateway con un service di tipo LoadBalancer, oppure anche
introdurre delle ulteriori configurazioni relative alla sicurezza

 aggiungiamo sul servizio Route 53 di AWS un record DNS che
risolve sentence.aswroma3.it con
xyz.eu-west-1.elb.amazonaws.com

Orchestrazione di container con Kubernetes100

Luca Cabibbo ASW

- Un errore comune

 Attenzione ad evitare i seguenti errori comuni

 dopo aver modificato (il codice sorgente di) una delle
applicazioni, ricordarsi (sempre!) di fare quanto segue

 effettuare (o ripetere) la build (Java) delle applicazioni

 effettuare (o ripetere) la build (Docker) delle immagini
Docker

 effettuare (o ripetere) il push su Docker Hub delle immagini
Docker (in questo caso è necessario!)

 potrebbe anche essere necessario cancellare le immagini
modificate dalla cache delle immagini dei container nei nodi
worker del cluster (soprattutto se non è cambiato il numero
di versione delle immagini che si vogliono utilizzare)

Orchestrazione di container con Kubernetes101

Luca Cabibbo ASW

* Helm

 Di per sé, i file di configurazione delle risorse Kubernetes non
sono parametrici – ma devono contenere tutte le informazioni per
la creazione delle risorse di interesse

 tuttavia, è spesso utile utilizzare dei file di configurazione
parametrici – per creare delle risorse di interesse in modo
personalizzato

 esempi di parametri potrebbero essere la versione di
un’immagine Docker, il numero di repliche, il valore di alcune
variabili d’ambiente, o anche l’opzionalità di una sezione di
una configurazione

 questo è utile, in particolare, se chi definisce i file di
configurazione è un team differente da chi dovrà usarli

 ad es., Bitnami offre delle immagini Docker per Kafka, con
una configurazione molto complessa, che potremmo voler
utilizzare in modo personalizzato – ad es., per usare Kafka
in modo non sicuro o sicuro, non persistente o persistente

Orchestrazione di container con Kubernetes102

Luca Cabibbo ASW

Helm

 Helm è un “package manager” per Kubernetes – che risolve il
precedente problema (in realtà, i suoi obiettivi sono più ampi)

 la soluzione fornita da Helm è intuitivamente basata su

 un formato parametrico per i file di configurazione delle
risorse – ad es., con una sintassi specifica per i parametri e
per le sezioni opzionali

 la possibilità di poter specificare i propri parametri in appositi
file di configurazione

 un pre-processor per le configurazioni, che può creare le
risorse Kubernetes di interesse interagendo direttamente
con Kubernetes

 queste idee sono rappresentate dai concetti di Helm chiamati
chart, config e release

Orchestrazione di container con Kubernetes103

Luca Cabibbo ASW

Helm

 Tre concetti importanti di Helm

 una chart è un insieme di informazioni necessarie per poter
creare un’istanza di applicazione Kubernetes

 una config contiene le informazioni di configurazione che
possono essere utilizzate in una chart per dar luogo a una
configurazione Kubernetes eseguibile

 una release è una istanza eseguibile di una chart, combinata
con una specifica config

Orchestrazione di container con Kubernetes104

Luca Cabibbo ASW

Helm

 Per esempio, è possibile eseguire Kafka in Kubernetes utilizzando
Helm come segue

 utilizzare la chart bitnamicharts/kafka per Kafka

 creare un file di configurazione kafka-values.yaml per
personalizzare la propria installazione di Kafka – ad es., una
configurazione non sicura e non persistente

 avviare Kafka con il comando (qui mostrato semplificato)
helm install -f kafka-values.yaml kafka bitnamicharts/kafka

Orchestrazione di container con Kubernetes105

Luca Cabibbo ASW

* Discussione

 L’orchestrazione di container è fondamentale per poter rilasciare
in produzione le applicazioni multi-servizi e multi-container – in un
singola macchina oppure in un cluster di macchine, fisiche o
virtuali – on premises oppure nel cloud

 l’orchestrazione di container sostiene infatti la disponibilità e la
scalabilità delle applicazioni di questo tipo – e consente di
sfruttare l’elasticità delle piattaforme virtualizzate e nel cloud

 per questo, i container e gli orchestratori di container sono
diventati delle tecnologie abilitanti per le applicazioni altamente
scalabili – di solito realizzate come applicazioni a microservizi

 nel contesto dei sistemi di orchestrazione di container, oggi
Kubernetes è certamente tra quelli più diffusi

Orchestrazione di container con Kubernetes106

Luca Cabibbo ASW

Discussione

 Le funzionalità di orchestrazione offerte da Kubernetes che sono
state esemplificate o discusse in questa dispensa

 architettura a servizi/microservizi

 uso di un linguaggio dichiarativo per la specifica delle
applicazioni, basato su un insieme di astrazioni (risorse)

 scalabilità e disponibilità dell’orchestratore

 disponibilità delle applicazioni

 comunicazione interna tra servizi

 comunicazione con i client esterni

Orchestrazione di container con Kubernetes107

Luca Cabibbo ASW

Discussione

 Kubernetes offre anche delle ulteriori funzionalità di
orchestrazione – che non sono state discusse in questa dispensa

 scalabilità delle applicazioni – modifica del numero di repliche
di ciascun tipo di pod – gestita manualmente oppure
automaticamente, sulla base del carico della CPU o di altre
metriche

 aggiornamento delle applicazioni senza interruzione di servizio
(basato sull’aggiornamento delle versioni delle immagini per i
pod dei deployment)

 Kubernetes supporta direttamente diverse strategie: rolling
update, ri-creazione dei pod (con una breve interruzione di
servizio), rollback – e ne supporta altre indirettamente

 gestione di dati persistenti e volumi

 gestione di dati di configurazione e segreti

 gestione della sicurezza

Orchestrazione di container con Kubernetes108

