)\ Luca Cabibbo
vea Architettura
@ A dei Sistemi
\daxa Software
' 4 4 4 4
Docker
di spensa asw870 Docker is not just another tool,
1t’s a game -changer.
ottobre 2025 And [firmly believe that every
Programmer should learn Docker.
Javin Paul

) - Riferimenti

o Luca Cabibbo. Architettura del Software: Strutture e Qualita.
Edizioni Efesto, 2021.

= Capitolo 39, Container e virtualizzazione basata su container

o Docker
https://www.docker.com/
https://docs.docker.com/

o Nickoloff, J., Kuenzli, S. Docker in Action, Manning, second edition,
2019.

o Stoneman, E. Learn Docker in a Month of Lunches, Manning, 2020.

2 Docker Luca Cabibbo ASW

) - Obiettivi e argomenti

o Obiettivi
= presentare la piattaforma per container Docker

o Argomenti
= introduzione
= Docker
= Docker in pratica
= come funziona Docker
= discussione

3 Docker Luca Cabibbo ASW

) * Introduzione

0 Questa dispensa presenta Docker — un container engine molto
popolare

= parte del materiale alla base di questa dispensa € presente sul
libro nel paragrafo 39.6

= inoltre, questa dispensa esemplifica e discute anche l'utilizzo
pratico di Docker

= 'uso di container Docker per I'esecuzione di applicazioni Spring
(una tematica centrale nelle esercitazioni di questo corso) &
invece I'argomento di una successiva dispensa

4 Docker Luca Cabibbo ASW

) * Docker *docker

o Docker (www.docker.com) € una piattaforma per container (un
container engine) per costruire, rilasciare ed eseguire applicazioni
distribuite — in modo semplice, veloce, scalabile e portabile

= un container Docker & un’unita software standardizzata, che
impacchetta un servizio software, insieme alle sue
configurazioni e dipendenze

= un container contiene ogni cosa necessaria per eseguire
quel servizio software — codice eseguibile, configurazioni,
librerie e strumenti di sistema

« un'immagine di container Docker diventa un’istanza di
container a runtime quando viene eseguita nel Docker
Engine

= | container Docker sono leggeri (usano poche risorse € si
avviano velocemente), standardizzati e aperti (e quindi portabili:
si possono eseguire con le principali distribuzioni Linux e con
Windows e Mac OS, e anche nel cloud) e sicuri

A N :
Storia
Yy 4

o La piattaforma Docker (2013) € stata inizialmente costruita sopra
ai container LXC (2008)

= LXC offre un insieme di funzionalita del kernel per la gestione di
container — che perd sono di basso livello e spesso difficili da
usare direttamente

= Docker si € basato su queste fondamenta per fornire un
insieme di strumenti di alto livello e funzionalita piu potenti e piu
semplici da usare

= 0ggi Docker si basa sulle librerie containerd e runc (2014,
2015) — oltre che su cgroup e namespace

= Docker € stato un successo immediato ed é utilizzato in
produzione da molte aziende — poche tecnologie hanno visto
un tasso di adozione simile

Docker Luca Cabibbo ASW

) Docker

o La piattaforma Docker consente una separazione tra le
applicazioni e l'infrastruttura di esecuzione

= per semplificare il rilascio delle applicazioni

= per garantire la portabilita dei servizi implementati mediante
container — sia on premises che nel cloud

containerized applications
A

appA
app B
app C
app D
app E

Docker Engine

Hardware/Infrastructure

Docker Luca Cabibbo ASW

) Docker Engine

o |l nucleo fondamentale della piattaforma Docker &€ Docker Engine

Client) DOCKER_HOST
docker build --{---- Docker daemon | “.V
. e i
! = -~ s K‘L
S,
A
/ -

J

:

<
y \
.. I i ~
docker pull il [Containers \\ Images |——__

docker run —f '\.\ NGiMX
¥ '*-../. /
N, . /

Docker Luca Cabibbo ASW

) Docker Engine

o Docker Engine é basato su un’architettura client-server
= il server € un host in grado di eseguire e gestire container
Docker

= basato sul processo persistente (demone) che fornisce il
runtime per container Docker (dockerd) — in pratica, &€ un
demone di alto livello che agisce da intermediario nei
confronti del container manager sottostante containerd

= gestisce un insieme di oggetti Docker — container, immagini,
reti e volumi

= il client (docker) accetta comandi dall’'utente mediante
un’interfaccia CLI e comunica con il demone Docker sull’host

= la comunicazione avviene mediante un’APlI REST
= il registry contiene un insieme di immagini
= il registry pubblico di Docker € Docker Hub

9 Docker Luca Cabibbo ASW

Contalnere iImmadini
Y 4 9

o Due tipi fondamentali di oggetti Docker

= un container €, appunto, un’istanza di container, che contiene
un’applicazione o un servizio — insieme a tutto cio che serve

per eseqguirlo

= € un concetto dinamico, runtime
= PUO essere eseguito in un host

= un'immagine € un modello per la creazione di container
= € un concetto statico
= NON puUO essere eseguita direttamente

= relazione tra container e immagini, in Docker
= ogni container € (sempre) creato da un’immagine
= da un’immagine & possibile creare molti container

10 Docker Luca Cabibbo ASW

) Immagini

o In pratica, un’immagine € un insieme di file — che rappresentano lo
shapshot del file system di un container

= ad es., un'immagine contenente un OS Ubuntu, Open JDK e
una specifica applicazione Java di interesse

= un’altra immagine potrebbe essere specifica per NGINX oppure
per Apache Kafka

= un’immagine & un concetto statico, inerte
= NON viene eseguita direttamente
= non ha un proprio stato
= € immutabile

11 Docker Luca Cabibbo ASW

) Container

o Un container € un’istanza eseguibile di container, creata da
un’immagine Docker

= un “application container” — che contiene un’applicazione o un
servizio
= ad es., un sistema software distribuito potrebbe comprendere

= N container che sono tutte repliche di un’applicazione web di
interesse (basati su una stessa immagine)

= un ulteriore container per distribuire le richieste dei client tra
le N repliche dell’applicazione web di interesse (basato su
un’immagine per NGINX)
= un container € un concetto dinamico, runtime
= pud essere eseguito su un host
= ha un proprio stato — che pud cambiare durante I'esecuzione

- ad es., il contenuto del file system (nel disco) o lo stato
delle sessioni (in memoria centrale)

12 Docker Luca Cabibbo ASW

A\
Il server Docker
y

o Per riassumere, il server Docker
= esegue il processo demone, runtime per container Docker

= gestisce un insieme di oggetti Docker — soprattutto container e
immagini, ma anche reti e volumi

= consente I'accesso ai suoi client, locali e remoti, mediante CLI
e REST

container image

I
manages manages —J

docker CLI
network data volumes

REST API

server manages
docker dasmon

13 Docker Luca Cabibbo ASW

) Registry di immagini

o Un registry € un servizio (pubblico o privato) che contiene una
collezione di immagini di container

= Docker Hub (https://hub.docker.com) ¢ il registry pubblico di
Docker — ma sono possibili anche registry privati

= Un repository € una porzione di un registry che contiene un
insieme di immagini di container — di solito sono varianti o
versioni diverse di una stessa immagine

o Un registry pubblico contiene in genere delle immagini di base —
che contengono solo un OS, ma in alcuni casi anche del software
di base — ma non software applicativo

= esempi di immagini di base sono ubuntu, postgres,
hashicorp/consul, bitnami/kafka, openjdk ed eclipse-temurin

14 Docker Luca Cabibbo ASW

)

Y Funzionalita e utilizzo

o Ecco le principali funzionalita offerte dalla piattaforma Docker

= creare un container (un’istanza di container) a partire da
un’immagine di container

= avviare, monitorare, ispezionare, arrestare e distruggere
container

= creare e gestire immagini di container

= gestire gruppi correlati di container — in cui eseguire
applicazioni distribuite multi-container

15 Docker Luca Cabibbo ASW

) * Docker in pratica

o L’'interazione con un host Docker avviene mediante un’interfaccia
(CLI o remota, I'interfaccia remota € basata su un’AP| REST)

= questa API & basata sul comando docker — con numerose
opzioni/comandi/operazioni per la gestione di immagini e
container (e di altri oggetti Docker) e del loro ciclo di vita

= i comandi docker image per la gestione delle immagini
= i comandi docker container per la gestione dei container

= alcuni comandi di uso comune esistono in due versioni, una
estesa e una breve

= ad es., docker container run e docker run
= ad es., docker image s e docker images

16 Docker Luca Cabibbo ASW

) Docker in pratica

o Alcuni comandi Docker di base

= docker image build (oppure docker build) consente di costruire
un’immagine (personalizzata)

» docker build -t image-name context

= docker container create (oppure docker create) consente di
creare un nuovo container da un’immagine

» docker create --name=container-name image-name

= docker container start (oppure docker start) consente di
mandare in esecuzione un container (gia creato)

= docker start container-name

= docker container run (oppure docker run) crea e manda in
esecuzione un nuovo container (anche anonimo), mediante un
comando singolo

» docker run [--name=container-name] image-name

17 Docker Luca Cabibbo ASW

)

Y Creazione ed esecuzione di container

0 Un primo esempio minimale — basato sul’immagine hello-world
disponibile presso il Docker Hub

= docker run hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
The Docker client contacted the Docker daemon.
. The Docker daemon pulled the "hello-world" image from the Docker Hub. (amdé64)
The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.

w N =

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

18 Docker Luca Cabibbo ASW

)

Y Creazione ed esecuzione di un container

o Un altro esempio, basato su un’altra immagine
= docker run aswroma3/whalesay Hello, world!

< Hello, world! >

\
\
\
.
Hit #H#t #H# ==
H O HH HE HE ===
prov—— e
{ | ===
o0 _J
v _J
o\

= in questo caso il comportamento € parametrico

19 Docker Luca Cabibbo ASW

)

Y Costruzione di immagini

o Per la costruzione di un'immagine personalizzata, Docker utilizza
un approccio di tipo infrastructure-as-code — sulla base di un file di
testo speciale di nome Dockerfile

= il Dockerfile contiene tutti i comandi da eseguire per costruire
un’immagine personalizzata

= il comando docker build -t image-name context consente di
costruire automaticamente un’immagine (di nome image-name)
a partire da un contesto context

= il contesto puo essere una cartella locale — in particolare, . —
oppure una locazione in un repository Git

= il contesto deve contenere il Dockerfile, insieme a ogni altro
file di interesse (ad es., file binari, script e template)

20 Docker Luca Cabibbo ASW

) Dockerfile - FROM e ENTRYPOINT

o Un Dockerfile & composto da una sequenza di istruzioni

Hello world
FROM busybox:latest
ENTRYPOINT ["echo", "Hello, world!"]

= I'istruzione FROM specifica I'immagine di base da cui costruire
'immagine personalizzata (ed eventualmente la sua versione)

» ad es., busybox (& una distribuzione Linux minimale) oppure
ubuntu:24.04

21 Docker Luca Cabibbo ASW

) Dockerfile - FROM e ENTRYPOINT

o Un Dockerfile & composto da una sequenza di istruzioni

Hello world
FROM busybox:latest
ENTRYPOINT ["echo", "Hello, world!"]

= ENTRYPOINT ["executable", " param1","param2",...] &
un’istruzione che specifica I'eseguibile o il comando che deve
essere eseguito dai container che verranno creati da questa
immagine
= questa istruzione non deve essere eseguita durante la
creazione dell'immagine — piuttosto deve far parte dei
metadati dell'immagine, per poter essere eseguita nel
container

= un Dockerfile deve iniziare con un’istruzione FROM e, di solito,
termina con una singola istruzione ENTRYPOINT

22 Docker Luca Cabibbo ASW

)

Y Creazione dell’immagine e del container

o Costruzione di un’immagine

= docker build -t myhello . — dalla cartella che contiene il
Dockerfile visto in precedenza

= crea una nuova immagine di nome myhello

o Creazione di un container
= docker create --name=myhello myhello
= crea un nuovo container di nome myhello a partire
dallimmagine myhello
o Esecuzione di un container
= docker start -i myhello

= avvia il container myhello (in modo interattivo)

= in questo caso, visualizza Hello, world! e poi termina
Hello, world!

23 Docker Luca Cabibbo ASW

) Dockerfile - CMD

o L’istruzione CMD consente di specificare degli argomenti per
I'istruzione ENTRYPOINT — questi argomenti possono essere

sovrascritti all’avvio del container, rendendo parametrico il
comportamento del container

Hello world

FROM bosybox:latest
ENTRYPOINT ["echo"]
CMD ["Hello, world!"]

= docker build -t myhello?2 .

= docker run myhello2

Hello, world!

= docker run myhello2 Ciao, mondo!

Ciao, mondo!

24 Docker Luca Cabibbo ASW

) Esempio: Apache HTTP Server

o Nei Dockerfile & possibile usare anche altre istruzioni
= ad es., il Dockerfile per un server Apache HTTP

Dockerfile for Apache HTTP Server
FROM ubuntu:24.04

Install apache2 package
RUN apt-get update && \
apt-get install -y apache2

Other instructions

ENV APACHE_LOG_DIR=/var/log/apache?2
VOLUME /var/www/html

EXPOSE 80

Launch apache2 server in the foreground

ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

= ora spieghiamo le nuove istruzioni

25 Docker Luca Cabibbo ASW

) L’istruzione RUN

o L’istruzione RUN specifica un comando che va eseguito durante la
costruzione di un‘immagine

= ad es., per richiedere I'esecuzione di un comando o di uno
script durante il provisioning dellimmagine di container — e non
durante I'’esecuzione del container

= un Dockerfile pud contenere piu istruzioni RUN — che vengono
eseguite in sequenza

o L’importante differenza tra I'istruzione ENTRYPOINT e le istruzioni
RUN ¢ il momento della loro esecuzione

= le istruzioni specificate da RUN vengono eseguite durante la
costruzione di un'immagine — ma non dai relativi container

= I'istruzione specificata da ENTRYPOINT verra eseguita dai
container creati a partire dall'immagine — ma non durante la
costruzione dellimmagine

26 Docker Luca Cabibbo ASW

) L’istruzione RUN

o Di solito & preferibile avere in un Dockerfile una sola istruzione
RUN (o comunque poche) — che specificano una sequenza di
comandi separati da && \ — anziché tante istruzioni RUN

= ad esempio

Install apache2 package (migliore!)
RUN apt-get update && \
apt-get install -y apache2

= va preferito a

Install apache2 package (peggiore!)
RUN apt-get update
RUN apt-get install -y apache2

= |a spiegazione per questo consiglio viene fornita piu avanti

27 Docker Luca Cabibbo ASW

) Altre istruzioni

0 Altre istruzioni per il Dockerfile

= 'istruzione COPY src dest copia un insieme di file o cartelle
dalla sorgente src (che deve essere relativa al contesto della
costruzione dellimmagine) alla destinazione dest (nel
container)

= I'istruzione ADD src dest € simile a COPY — ma consente di
copiare nel container anche dei file remoti (ovvero esterni al
contesto)

= I'istruzione ENV key=value imposta una variabile d’ambiente
nel container

28 Docker Luca Cabibbo ASW

) L’istruzione VOLUME

o Altre istruzioni per il Dockerfile

= I'istruzione VOLUME path definisce un punto di montaggio
(mount) esterno — per montare dati nell’host o in un altro
container

= 'istruzione VOLUME va usata in congiunzione con altre
opzioni dei comandi docker create e docker run

- 'opzione -v host-src:container-dest monta nel container
una cartella del sistema host — € una cartella condivisa tra
I'host e il container in una posizione ben definita dell’host

- 'opzione -v container-dest monta invece nel container un
volume anonimo — € una cartella gestita da Docker, che
in pratica risiede sempre nell’host, che viene ancora
condivisa con il container (utile se il container la vuole
condividere con altri container)

- 'opzione --volumes-from=container-name monta nel
container i volume gestito da un altro container

29 Docker Luca Cabibbo ASW

) L’istruzione EXPOSE

0 Altre istruzioni per il Dockerfile

= 'istruzione EXPOSE port specifica che il container ascolta a
runtime alla porta port

= questa istruzione viene di solito usata in congiunzione con
altre opzioni dei comandi docker create e docker run per il
port mapping, ovvero per pubblicare alcune porte di un
container nel suo host (questi sono i termini usati da Docker
per il port forwarding)

- 'opzione -p host-port:container-port per pubblicare una
porta specifica esposta dal container su una porta
specifica dell’host

- 'opzione -P per pubblicare tutte le porte esposte dal
container su porte casuali dell’host

= in ogni caso, i container possono comunicare tra di loro
anche su porte non esposte oppure non pubblicate sull’host

30 Docker Luca Cabibbo ASW

Esempio: Apache HTTP Server

.

o Dockerfile per un server Apache HTTP

Dockerfile for Apache HTTP Server
FROM ubuntu:24.04

Install apache2 package
RUN apt-get update && \
apt-get install -y apache2

Other instructions

ENV APACHE_LOG_DIR=/var/log/apache2
VOLUME /var/www/html

EXPOSE 80

Launch apache2 server in the foreground
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

31 Docker Luca Cabibbo ASW

) Esempio: Apache HTTP Server

o Costruzione dellimmagine

= docker build -t myapache . — dalla cartella che contiene il
Dockerfile

o Creazione del container

= docker create
-v ./www:/var/www/html -p 8080:80
--name=myapache myapache

= e pagine servite dal server HTTP sono quelle nella cartella
locale dell’nost www

= il server HTTP é reindirizzato alla porta 8080 dell’host

o Esecuzione del container
= docker start myapache — avvia il container myapache

= poi si potra accedere al server HTTP dall’host su
http://localhost:8080

32 Docker Luca Cabibbo ASW

) Altri comandi Docker

o Altri comandi Docker utili
= per elencare i container in esecuzione (0 anche arrestati)
= docker container s — oppure docker ps [-a]

= per ispezionare le porte usate da un container — utile
soprattutto quando si usa l'opzione -P

» docker container port container-name — oppure
docker port

« il risultato & della forma 80/tcp -> 0.0.0.0:8080
= per ispezionare un container o un’immagine

= docker container inspect container-name — oppure
docker inspect

= restituisce le informazioni sul container o 'immagine (in
formato JSON) — ad es., la configurazione della rete (tra cui
la pubblicazione delle porte) e la condivisione di volumi

33 Docker Luca Cabibbo ASW

) Altri comandi Docker

o Altri comandi Docker utili
= per visualizzare i log generati in un container
» docker container logs container-name — oppure docker logs

= per arrestare un container in esecuzione

» docker container stop container-name — oppure docker stop
= per rimuovere un container

= docker container rm container-name — oppure docker rm

= per arrestare tutti i container in esecuzione (da usare con
cautela!)

» docker stop $(docker ps -a -q)
= per rimuovere tutti i container (da usare con cautela!)
» docker rm $(docker ps -a-q)

34 Docker Luca Cabibbo ASW

) Altri comandi Docker

o Altri comandi Docker utili
= per elencare le immagini nella cache locale
» docker image s — oppure docker images
= per rimuovere un’immagine dalla cache locale
= docker image rm image-name — oppure docker rmi

= per rimuovere tutte le immagini dalla cache locale (da usare
con cautela!)

» docker rmi -f $(docker images -q)

35 Docker Luca Cabibbo ASW

) Altri comandi Docker

o Altri comandi Docker utili

= il client Docker pu0 essere utilizzato anche per specificare
comandi da eseguire in un host Docker remoto docker-host

» docker -H=tcp://docker-host:2375 command
» docker -H=tcp://docker-host:2376 command

= la porta 2376, a differenza della 2375, supporta un accesso
sicuro su TLS

= ’'host Docker deve essere configurato per essere abilitato
all'accesso remoto

= in alternativa, e possibile specificare I’host Docker remoto
usando la variabile d’ambiente DOCKER_HOST

» export DOCKER_HOST=tcp://docker-host:2375

» docker command - il comando viene eseguito su docker-
host anziché localmente

36 Docker Luca Cabibbo ASW

)

* Come funziona Docker
y 4

o Discutiamo ancora il funzionamento di Docker — in particolare, i
seguenti aspetti

= formato delle immagini e dei container
= costruzione di immagini

= creazione di container

= esecuzione di container

= condivisione di dati (volumi)

= reti

= registry

37 Docker Luca Cabibbo ASW

)

) Formato delle immagini (e dei container)

o Un elemento fondamentale di Docker ¢ il formato usato per il file
system delle immmagini e dei container

= il file system di un’immagine (o di un container) & costituito da
una sequenza di strati — ciascuno strato € un insieme di file

= questi strati sono combinati in un singolo file system coerente
mediante uno Union File System (UFS)

= un file viene letto nello strato piu alto in cui si trova

= in un container, I'unico strato che pud essere scritto a
runtime ¢é lo strato piu alto

38 Docker Luca Cabibbo ASW

)

Y Formato delle immagini (e dei container)

o Un elemento fondamentale di Docker ¢ il formato usato per il file
system delle immagini e dei container

= il file system di un’immagine (o di un container) é costituito da
una sequenza di strati — ciascuno strato € un insieme di file

container layer } container layer
[(writable)
add Emacs
image layers | add Apache
(read-only)
.base Ubuntu
image

39 Docker Luca Cabibbo ASW

)

Y Formato delle immagini (e dei container)

o Nel file system di ogni immagine (o container), la base &€ sempre
un’immagine di base — di solito contiene un OS e le sue librerie

= ogni strato successivo corrisponde in genere all'installazione di
un package, un middleware o di un’applicazione

= oltre a questi strati, ciascun container (ma non le immagini)
possiede un ultimo strato aggiuntivo, che rappresenta l'unica
parte modificabile del file system del container

= tutte le scritture, le modifiche e le cancellazioni eseguite nel
container operano su quest’ultimo strato aggiuntivo

= questo formato “leggero”
= consente di condividere strati tra immagini e tra container

= facilita 'aggiornamento delle immagini (ad es., per
aggiornare un’applicazione a una nuova versione) — che puod
essere effettuato mediante I'aggiornamento o I'aggiunta di
strati, anziché la ricostruzione completa delle immagini

40 Docker Luca Cabibbo ASW

)

Y Immagini e container

o Un'immagine o Un container (o meglio, il suo
file system)

! Thin R/W layer i-'— Container layer

! I ! ! !

-

91e54dfb1179 91e54dfb1179

d74508fb6632 1.895 KB d74508fb6632 1.895 KB

ﬂ >~ |mage layers (R/0)

€22013c84729 194.5 KB c22013c84729 194.5 KB

d3alf33e8aba 188.1 MB d3alf33e8aba 188.1 MB
ubuntu:15.04 ubuntu:15.04 4
Image Container
(based on ubuntu:15.04 image)
41 Docker Luca Cabibbo ASW

)

Y Immagini e container

o Un’immagine condivisa da piu container

L Thin R/W layer__} L__Thin R/Wiayer__}

|

91e54dfb1179

d74508fb6632 1.895 KB

i

€22013c84729 194.5 KB

d3alf33e8a5a 188.1 MB

ubuntu:15.04 Image

42 Docker Luca Cabibbo ASW

)

) 2 Costruzione di immagini

o La costruzione di un'immagine personalizzata € basata
sull’esecuzione di un Dockerfile, e avviene come segue

= per prima cosa, I'immagine di base specificata da FROM viene
scaricata dal registry in una cache di immagini dell’host (se non
e gia presente nella cache)

= questa immagine di base (pud essere composta da uno o
piu strati) viene usata come strato (o strati) di base della
nuova immagine personalizzata

43 Docker Luca Cabibbo ASW

)

Y Costruzione di immagini

o La costruzione di un'immagine personalizzata € basata
sull’esecuzione di un Dockerfile, e avviene come segue

= poi, ripetutamente, per ciascuna istruzione X del Dockerfile (in
particolare, RUN)

= viene creato un nuovo container temporaneo Cy a partire
dall'immagine corrente, a cui viene aggiunto sopra un nuovo
strato scrivibile Sy

= nel container C viene eseguita I'istruzione X del Dockerfile
— che probabilmente modifichera lo strato Sy

= quindi, il container Cy viene arrestato, e lo strato Sy viene
“congelato” e salvato come strato (in sola lettura)
dell'immagine corrente, aggiornandola

= Docker consiglia di minimizzare il numero di strati nelle
immagini e nei container (per ridurre i tempi di accesso al file
system) — e dunque di minimizzare il numero di istruzioni RUN
di un Dockerfile

44 Docker Luca Cabibbo ASW

)

Y - Creazione di container

o La creazione di un container avviene sempre a partire da
un’immagine
= un container consiste di un file system e di meta-dati
= il file system (a strati) del container é ottenuto dall'immagine
iniziale, a cui viene aggiunto sopra un nuovo strato scrivibile,

specifico per il container — questo strato viene allocato nel
file system dell’host

= le immagini sono invece immutabili e possono essere condivise
da piu container

45 Docker Luca Cabibbo ASW

)

Y - Esecuzione di container

o Esecuzione di un container

= quando viene richiesta I'esecuzione di un container, il container
engine alloca le risorse runtime per il container

= ad es., alloca (nel kernel dell’host) un insieme di namespace
e configura la rete per il container

= poi avvia il container, a partire dal suo file system

= infine, il container esegue il comando specificato da
ENTRYPOINT (con gli argomenti specificati da CMD o dalla
linea di comando)

46 Docker Luca Cabibbo ASW

)

) 2 Volumi e condivisione di dati

0 Lo storage dei container € di per sé effimero — quando un
container viene distrutto, tutti i suoi dati vengono persi

= come € possibile gestire dati persistenti?

o Un volume € una directory al di fuori del file system di un container

= un volume puo essere acceduto, condiviso e riusato da piu
container

= un volume consente di gestire dati persistenti, in modo
indipendente dal ciclo di vita dei singoli container che lo
possono accedere

47 Docker Luca Cabibbo ASW

)

Y Volumi e condivisione di dati

o Una prima possibilita € (come abbiamo gia fatto) montare una
cartella dell’host come volume in un container in esecuzione
nell’host, mediante I'opzione -v di docker create o di docker run

= docker create -v ./www:/var/www/html ...

= in questo caso, i dati risiedono nell’host (ovvero, in una
posizione assoluta predefinita del file system dell’host) — e non
nel container

= le letture di questi dati vengono effettuate nell’host

- un esempio di utilizzo & per servire pagine HTML
residenti nell’nost

= inoltre, anche le eventuali modifiche a questi dati vengono
effettuate nell’host, in modo persistente

- un esempio di utilizzo & per redirezionare nell’host i file di
log di un server eseguito in un container

= in effetti, questi dati potrebbero anche risiedere in un volume
48 montato ne”’hOSt Docker Luca Cabibbo ASW

)

Y Volumi e condivisione di dati

o Un’altra possibilita consente di definire un volume condiviso tra piu
container — ma senza che il volume sia legato a una specifica
cartella dell’host — va usata 'opzione --volumes-from

= ad es., viene prima creato un container container, usando
I'opzione -v per montare nel container un volume anonimo — ad
es., -v /var/logs
= questo volume risiedera in una cartella gestita da Docker
associata al volume — in pratica, il volume risiede ancora
nell’host, ma non in una posizione assoluta predefinita

= & poi possibile creare altri container che accedono a quel
volume condiviso, con l'opzione --volumes-from container

= tutti questi container possono leggere da e scrivere su
questo volume

= se viene cancellato il container in cui risiede un volume, il
volume viene comunque mantenuto (a meno che ne venga
richiesta una cancellazione esplicita)

49 Docker Luca Cabibbo ASW

) - Reti

o Docker consente di gestire la comunicazione in rete tra container,
nonché con I'host

= durante l'installazione, Docker crea automaticamente tre reti,
bridge, host e none — ma & anche possibile crearne altre

= la rete bridge (in modalita “bridge”) & associata all'interfaccia
virtuale dockerO sull’host e a una rete privata 172.17.0.1/16

= quando un container viene mandato in esecuzione, Docker gli
associa un indirizzo IP libero della rete bridge

= € possibile collegare un container a una rete differente
usando 'opzione --network=network

= | container possono comunicare tra di loro conoscendo la
posizione assoluta (indirizzo IP e porta) dei diversi servizi
presenti in rete

= la rete host aggiunge invece un container alla rete dell’host

50 Docker Luca Cabibbo ASW

) Reti

o Altre informazioni sulle reti

= docker inspect consente di trovare le informazioni necessarie
per comunicare in rete con un container

= ad es., il server Apache HTTP potrebbe essere esposto
all'indirizzo 172.17.0.2:80 (della rete privata)

= &€ anche possibile rendere questi servizi accessibili all’host e al
di fuori dell’host mediante il port mapping (port forwarding) —
tramite le opzioni -p e -P di docker create e docker run

= Docker gestisce queste opzioni configurando
automaticamente nell’host le regole NAT di iptables

= 'opzione --ip consente anche di associare a un container
uno specifico indirizzo IP (valido per I'host)

51 Docker Luca Cabibbo ASW

) Reti

o Altre informazioni sulle reti

= usando una rete definita dall’'utente (anziché la rete bridge) i
container possono comunicare tra di loro anche mediante il loro
nome “logico” — oltre che mediante il loro indirizzo IP

= il container engine opera da DNS per i suoi container

= creazione di una rete definita dall’'utente
» docker network create -d network-driver network-name
» ad es., docker network create -d bridge mynet

= collegamento di un container a una rete

» docker run --network=mynet --name=mycontainer -it
busybox

= gli altri container collegati a questa rete possono vedere
questo container mediante il suo nome “logico” mycontainer

= un container puo anche essere collegato a piu reti

52 Docker Luca Cabibbo ASW

) - Registry

o Un registry € un servizio per la gestione di un insieme di immagini
di container
= operazioni principali di un registry
» docker pull image-name — effettua il download di

un’immagine dal registry alla cache locale dell’host —
altrimenti, docker build lo fa automaticamente

« docker push image-name — effettua I'upload di un’immagine
al registry
= interrogazione del registry

= il registry pubblico di Docker € Docker Hub — alcune delle
immagini che gestisce sono “ufficiali”
= in alternativa, Docker Registry & uno strumento per gestire
un proprio registry privato
= nello spirito di Docker, Docker Registry pud essere eseguito
come un container

53 Docker Luca Cabibbo ASW

) Uso di Docker Hub

o Utilizzo di Docker Hub — bisogna prima creare sul sito di Docker
Hub un proprio account, ad es., aswroma3 — dopo di che

= login

» docker login [-u aswroma3] [-p password] [server]
= creazione e taggatura (tagging) di un’immagine

= docker build -t aswroma3/myhello . oppure

= docker build -t myhello . seguito da
docker tag myhello aswroma3/myhello

= salvataggio di un’immagine sul registry (deve essere taggata)
» docker push aswroma3/myhello

= caricamento di un’immagine dal registry (opzionale)
= docker pull aswroma3/myhello

= creazione ed esecuzione di un container dall'immagine
» docker run aswroma3/myhello

54 Docker Luca Cabibbo ASW

) Docker Registry

o Gestione di un Docker Registry (privato) — nello spirito di Docker,
puod essere eseguito come un container

= avvio del registry (I'opzione -d esegue il container in
background) — supponiamo sul nodo myregistry

» docker run -d -p 5000:5000 --restart=always --name registry
-v /var/local/docker/registry:/var/lib/reqgistry registry:2
= creazione e taggatura di un’immagine
» docker build -t myhello .
» docker tag myhello myregistry:5000/myhello
= salvataggio di un’immagine sul registry (deve essere taggata)
= docker push myregistry:5000/myhello
= caricamento di un'immagine dal registry
» docker pull myregistry:5000/myhello
= creazione ed esecuzione di un container dall'immagine
= docker run myregistDEXe:rSOOO/myhello

55 Luca Cabibbo ASW

)

& Raccomandazioni generali

o Alcune raccomandazioni sui container — e le relative immagini
= Uun solo processo per container
= sostiene il riuso di immagini e container
= sostiene la scalabilita orizzontale

= container “effimeri” (ephemeral, ovvero temporanei, passeggeri,
e senza stato) — per quanto possibile

= in modo che un container possa essere arrestato e distrutto
e poi sostituito da un altro container il piu rapidamente
possibile

= sostiene disponibilita e scalabilita
= container minimali
= usa I'immagine di base piu ridotta possibile, evita
I'installazione di package non necessari € minimizza il
numero di strati

= sostiene la disponibilita

56 Docker Luca Cabibbo ASW

)

) * Discussione

o La piattaforma Docker si € imposta molto rapidamente come
tecnologia di riferimento per i container

= molte aziende (comprese grandi aziende come Google) usano
Docker non solo per lo sviluppo e il test, ma anche come
ambiente di produzione per applicazioni con requisiti critici di
disponibilita, scalabilita ed elasticita

= Docker € supportato sia on premises che nel cloud

= grazie a Docker, i container sono divenuti una tecnologia per il
rilascio di applicazioni alternativa e complementare alla
virtualizzazione di sistema

= | benefici e le motivazioni per 'uso di Docker saranno piu
evidenti dopo aver discusso il rilascio di un proprio sistema
software distribuito con Docker, e in particolare mediante la
composizione e l'orchestrazione di container Docker — che
costituiscono I'argomento di un successivo capitolo e di
successive dispense

57 Docker Luca Cabibbo ASW

