
Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5). 
Pittsburgh, PA, November 6-9, 2005.    Named one of the five best papers of the conference. 

1 

Generalizing a Model of Software Architecture Design  
from Five Industrial Approaches 

Christine Hofmeister 
Lehigh University 

Bethlehem, PA, USA 
crh@eecs.lehigh.edu 

Philippe Kruchten 
University of British Columbia

Vancouver, B.C., Canada 
pbk@ece.ubc.ca 

Robert L. Nord 
Software Engineering Institute

Pittsburgh, PA, USA 
rn@sei.cmu.edu 

Henk Obbink 
Philips Research Labs 

Eindhoven, The Netherlands 
henk.obbink@philips.com 

Alexander Ran 
Nokia 

Burlington, MA, USA 
alexander.ran@nokia.com 

Pierre America 
Philips Research Labs 

Eindhoven, The Netherlands 
pierre.america@philips.com 

 
Abstract 

We compare five industrial software architecture 
design methods and we extract from their commonal-
ities a general software architecture design approach. 
Using this general approach, we compare across the 
five methods the artifacts and activities they use or 
recommend, and we pinpoint similarities and differ-
ences. Once we get beyond the great variance in termi-
nology and description, we find that the 5 approaches 
have a lot in common and match more or less the 
“ideal” pattern we introduced. 

1. Introduction  

Over the last 15 years a number of organizations 
and individual researchers have developed and docu-
mented techniques, processes, guidelines, and best 
practices for software architecture design [4, 5, 6, 7, 8, 
12, 15]. Some of these were cast and published as ar-
chitecture design methods or systems of concepts, 
processes and techniques for architecture design [16, 
22, 26, 27].  

Since many of the design methods were developed 
independently, their descriptions use different vocabu-
lary and appear quite different from each other. Some 
of the differences are essential. Architecture design 
methods that were developed in different domains 
naturally exhibit domain characteristics and emphasize 
different goals. For example architectural design of 
information systems emphasizes data modeling, and 
architecture design of telecommunication software is 
concerned with continuous operation, live upgrade and 
interoperability. Other essential differences may in-
clude methods designed for large organization vs. 
methods suitable for a team of a dozen software devel-

opers, methods with explicit support for product fami-
lies vs. methods for one of a kind systems, etc. 

On the other hand, all software architecture design 
methods must have much in common as they deal with 
the same basic problem: maintaining intellectual con-
trol over the design of large software systems that: re-
quire involvement of and negotiation among multiple 
stakeholders; are developed by large, often distributed 
teams over extended periods of time; and have to ad-
dress multiple possibly conflicting goals and concerns. 

It is thus of significant interest to understand the 
commonalities that exist between different methods 
and to develop a general model of architecture design. 
Such a model would help us better understand the 
strengths and weaknesses of different existing methods 
as well as provide a framework for developing new 
methods better suited to specific application domains. 

With this goal in mind, we selected five different 
methods: Attribute-Driven Design (ADD) Method  [4], 
developed at the SEI; Siemens’ 4 Views (S4V) method 
[16], developed at Siemens Corporate Research; the 
Rational Unified Process 4 + 1 views (RUP 4+1) [21, 
22] developed and commercialized by Rational Soft-
ware, now IBM; Business Architecture Process and 
Organization (BAPO) developed primarily at Philips 
Research [1, 26], and Architectural Separation of Con-
cerns (ASC) [27] developed at Nokia Research. We 
also assembled a team of people who have made sig-
nificant contributions to developing and documenting 
at least one of the methods. Through extensive discus-
sions focused on how typical architecture design tasks 
are accomplished by different methods, we have ar-
rived at a joint understanding of a general software 
architecture design model that underlies the five meth-
ods.  In this paper we document our understanding of 
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what seems to be fundamental about architecture de-
sign.  

This paper is organized as follows. We introduce 
the five contributing methods in Section 2. Then in 
Section 3 we present a general model of architecture 
design. Section 4describes the five contributing meth-
ods using terms and concepts of the general model, and 
discusses the commonalities and differences between 
the contributing methods. Section 5 discusses related 
work, and Section 6 concludes the paper. 

2. Five Industrial Software Architecture 
Design Methods 

2.1. Attribute-Driven Design 
The Attribute-Driven Design (ADD) method [4], 

developed at the SEI, is an approach to defining soft-
ware architectures by basing the design process on the 
architecture’s quality attribute requirements. It follows 
a recursive decomposition process where, at each stage 
in the decomposition, architectural tactics and patterns 
are chosen to satisfy a set of quality attribute scenarios.  

In ADD, the architects, for each module to decom-
pose, 1) choose the architectural drivers, 2) choose an 
architectural pattern that satisfies the drivers, 3) instan-
tiate modules and allocate functionality from use cases, 
and represent the results using multiple views, 4) de-
fine interfaces of the child modules, and 5) verify and 
refine the use cases and quality scenarios, making them 
constraints for the child modules. 
 
2.2. Siemens’ 4 views 

The Siemens Four-Views (S4V) method [16, 32],  
developed at Siemens Corporate Research, is based on 
best architecture practices for industrial systems. The 
four views (conceptual, execution, module and code 
architecture view), separate different engineering con-
cerns, thus reducing the complexity of the architecture 
design task. 

These views are developed in the context of a re-
curring Global Analysis activity. For Global Analysis, 
the architect identifies the organizational, technologi-
cal, and product factors that influence the architecture: 
requirements, desired system qualities, organizational 
constraints, existing technology, etc. From these the 
key architectural issues or challenges are identified; 
typically they arise from a set of factors that, taken 
together, will be difficult to fulfill. Design strategies 
are proposed to solve the issue, and they are applied to 
one or more of the views. In addition to interleaving 
Global Analysis with the view design, the architect is 
expected to iterate among the design tasks of the four 
views. 
 

2.3. RUP’s 4+1 Views 
The Rational Unified Process (RUP) is a software 

development process developed and commercialized 
by Rational Software, now IBM. RUP includes an ar-
chitectural design method, using the concept of 4+1 
views (RUP 4+1) [21, 22]; four views to describe the 
design: logical view, process view, implementation 
view and deployment view, using a use-case view to 
relate the design to the context and goals. 

In RUP, architectural design is spread over several 
iterations in an elaboration phase, iteratively populating 
the 4 views, driven by architecturally significant use 
cases, nonfunctional requirements in the supplementary 
specification, and risks. Each iteration results in an 
executable architectural prototype, which is used to 
validate the architectural design. 
 
2.4. Business Architecture Process and Organi-

zation 
The BAPO/CAFCR approach [1, 24, 26, 33], de-

veloped primarily by Philips Research, aims at devel-
oping an architecture (the A in BAPO) for software-
intensive systems that fits optimally in the context of 
business (B), process (P), and organization (O). For 
that purpose, the five CAFCR views are described: 
Customer, Application, Functional, Conceptual, and 
Realization. These views bridge the gap between cus-
tomer needs, wishes, and objectives on the one hand 
and technological realization on the other hand.  

In BAPO/CAFCR, the architect iteratively: 1) fills 
in information in one of the CAFCR views, possibly in 
the form of one of the suggested artifacts; 2) analyzes a 
particular quality attribute across the views to establish 
a link between the views and with the surrounding 
business, processes and organization. The architecture 
is complete when there is sufficient information to real-
ize the system and the quality attribute analysis shows 
no discrepancies. 
 
2.5. Architectural Separation of Concerns 

Architectural Separation of Concerns (ASC) or 
ARES System of Concepts [27], developed primarily 
by Nokia, is a conceptual framework based on separa-
tion of concerns to manage complexity of architecture 
design. ASC relies on the fact that concerns related to 
different segments of the software transformation cycle 
(typically including design, build, upgrade, load, and 
run time) are often separable.  In addition to design of 
architectural structures for each segment, ASC pays 
special attention to design of texture – replicated mi-
crostructure that addresses concerns that cannot be lo-
calized within the main structure. 
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In ASC, the architect analyses design inputs, such 
as preferred technology platforms, road maps, func-
tional and quality requirements for the product family 
and the product, and using a palette of techniques, pro-
duces and prioritizes ASR (architecturally significant 
requirements), groups ASR by segments of the soft-
ware transformation cycle that they address. Implemen-
tation (write-time) design addresses the ASR con-
cerned with the write-time segment. Design decisions 
make implementation technology choices, partition 
functional requirements between different architectural 
scopes of product portfolio, product family, or single 
product, establish portability layers for multiplatform 
products, allocate classes of functional requirements to 
different subsystems, and develop description of the 
API facilitating work division and outsourcing. Per-
formance (run-time) design deals with run-time ASR 
addressing concurrency and protection, develops per-
formance models and makes decisions regarding task 
and process partitions, scheduling policies, resource 
sharing and allocation. Finally, delivery/installation/ 
upgrade design decisions address the ASR of the corre-
sponding segments. Typical decisions address parti-
tions into separately loadable/executable units, installa-
tion support, configuration data, upgrade/downgrade 
policies and mechanisms, management of shared com-
ponents, external dependencies and compatibility re-
quirements. 

3. A General Model for Software Architec-
ture Design  

The general model for software architecture design 
we developed first classifies the kinds of activities per-
formed during design. Architectural analysis articulates 
architecturally significant requirements (ASRs) based 
on the architectural concerns and context. Architectural 
synthesis results in candidate architectural solutions 
that address these requirements. Architectural evalua-
tion ensures that the architectural decisions used are the 

right ones (see Figure 1).  
Because of the complexity of the design task, these 

activities are not executed sequentially. Instead they 
are used repeatedly, at multiple levels of granularity, 
until the architecture is complete and validated. Thus 
the second part of the general model is a characteriza-
tion of its workflow. 

The key requirement of our model was that it be 
general enough to fit our five architecture design meth-
ods, and provide a useful framework for comparing 
them. One strong influence on the activities in our 
model was Gero’s Function-Behavior-Structure 
framework for engineering design [13, 14], which 
Kruchten applies to software design in [23]. 
 
3.1. Architectural Design Activities & Artifacts 

First we describe the main activities of the model, 
and their related artifacts. 

Architectural concerns: The IEEE 1471 standard 
defines architectural concerns as “those interests which 
pertain to the system’s development, its operation or 
any other aspects that are critical or otherwise impor-
tant to one or more stakeholders. Concerns include 
system considerations such as performance, reliability, 
security, distribution, and evolvability” [18]. Most ar-
chitectural concerns are expressed as requirements on 
the system, but they can also include mandated design 
decisions (e.g., use of existing standards). Regulatory 
requirements may also introduce architectural con-
cerns. 

Context: According to IEEE 1471, “a system’s … 
environment, or context, determines the setting and 
circumstances of developmental, operational, political, 
and other influences upon that system” [18]. This in-
cludes things like business goals (e.g., buy vs. build), 
characteristics of the organization (e.g., skills of devel-
opers, development tools available), and the state of 
technology. Note that sometimes the only distinction 
between a concern and a context is whether it is spe-
cifically desired for this system (a concern) or is in-

 
 

Figure 1: Architectural design activities 
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stead a general characteristic or goal of the organiza-
tion or a stakeholder (context). For example, a business 
goal of the architecture is a concern, whereas a busi-
ness goal of the enterprise is context. 

Architecturally-Significant Requirements: An 
ASR is “a requirement upon a software system which 
influences its architecture” [25]. Not all of the system’s 
requirements will be relevant to the architecture. Con-
versely, not all ASRs will have originally been ex-
pressed as requirements: they may arise from other 
architectural concerns or from the system context. 

Architectural analysis: Architectural analysis 
serves to define the problems the architecture must 
solve. This activity examines architectural concerns 
and context in order to come up with a set of ASRs.  

Candidate architectural solutions: Candidate ar-
chitectural solutions may present alternative solutions, 
and/or may be partial solutions (i.e., fragments of an 
architecture). They reflect design decisions about the 
structure of software. The architectural solutions in-
clude information about the design rationale, that is, 
commentary on why decisions where made, what deci-
sions were considered and rejected, and traceability of 
decisions to requirements. 

Architectural synthesis: Architectural synthesis 
is the core of architecture design. This activity pro-
poses architecture solutions to a set of ASRs, thus it 
moves from the problem to the solution space.  

Validated architecture: The validated architec-
ture consists of those candidate architectural solutions 
that are consistent with the ASRs. These solutions must 
also be mutually consistent. Only one of a set of alter-
native solutions can be present in the validated archi-
tecture. The validated architecture, like the candidate 
architectural solutions, includes information about the 
design rationale. 

Architectural evaluation: Architectural evalua-
tion ensures that the architectural design decisions 
made are the right ones. The candidate architectural 
solutions are measured against the ASRs. Although 
multiple iterations are expected, the eventual result of 
architectural evaluation is the validated architecture. 
Intermediate results would be the validation or invali-
dation of candidate architectural solutions. 

In addition to the above-described artifacts used in 
the design activities, there are some less explicit inputs 
that are critical to the design process: 
 Design knowledge comes from the architect, from 
organizational memory, or from the architecture 
community.  It can take the form of styles, patterns, 
frameworks, reference architectures, ADLs, product-
line technologies, etc.  

 Analysis knowledge is needed to define the problem 
and evaluate the solution.  Some work exists in 
analysis patterns [11] and analytic models associated 

with design fragments [2].  Knowledge of the evalua-
tion process itself (e.g., workflow, methods and 
techniques) [25] can also be an important input. 

 Knowledge necessary to produce the system (tech-
nologies, components, project management). In 
many cases analysis knowledge is not sufficient to 
evaluate the architecture. One example is when a 
partial implementation is needed upon which to do 
experimentation. In general the design must be 
evaluated using realization knowledge, in order to 
ensure that the system can be built.  

 
3.2. Workflow 

In all five of the architectural methods on which 
our model is based, the three main activities in Figure 1 
(architectural analysis, architectural synthesis, and ar-
chitectural evaluation) do not proceed sequentially, but 
rather proceed in small leaps and bounds as architects 
move constantly from one to another, “growing” the 
architecture progressively over time. This is primarily 
because it is not possible to analyze, resolve, find solu-
tions and evaluate the architecture for all architectural 
concerns simultaneously: the range and number of in-
terrelated issues is just too overwhelming for the hu-
man mind, and moreover the inputs (goals, constraints, 
etc) are usually ill-defined and only get better under-
stood or discovered as the architecture starts to emerge. 

To drive this apparently haphazard process, archi-
tects maintain, implicitly or explicitly, a backlog of 
smaller needs, issues, problems they need to tackle and 
ideas they might want to use. The backlog drives the 
workflow, helping the architect determine what to do 
next. It is not an externally visible, persistent artifact; 
on small projects it may only be a list in the architect’s 
notebook, while for larger projects it might be an elec-
tronic, shared spreadsheet. See Figure 2. 

The backlog is fed by: a) selecting some architec-
tural concern and/or ASR from architectural analysis, 
b) negative feedback in the form of issues or problems 
arising from architectural evaluation, and to a lesser 
extent, c) ideas from the architect’s experience, discus-
sions, readings, etc. A backlog item can be thought of 
as a statement of the form: 
 “We need to make a decision about X.” 
 or “We should look at Y in order to address Z.” 

The backlog is constantly prioritized, bringing to 
the front the items that seem most urgent. The tactics 
for prioritization will vary, mostly based on external 
forces. These forces include risks to mitigate, upcom-
ing milestones, team pressure to start work on a part of 
the system, or simply perception of greater difficulty. 
Very often it is simply the need to relieve pressure 
from a stakeholder that drives an item to the top of the 
backlog.



Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5). Pittsburgh, PA, November 6-9, 
2005.    Named one of the five best papers of the conference. 

5 

Table 1 – Comparing methods: Activities 

Activity ADD S4V RUP 4+1 BAPO/CAFCR ASC 

Architectural 
analysis 

Step 2a: Choose the architec-
tural drivers. 
Quality attribute models help 
elicit and structure the re-
quirements. 

Global Analysis involves 1) identifying 
influencing factors; 2) analyzing them 
to identify their importance to the ar-
chitecture, flexibility, and change-
ability; 3) identifying key issues or 
problems that arise from a set of factors  

Build or extract a 
subset of the use case 
model as key drivers 
for architectural de-
sign 

BAPO analysis identifies 
those elements of the 
BAPO context that are 
relevant for the architec-
tural fit and determine the 
scope of the architecture 

Concept definition, identification 
and refinement of ASR, partition of 
ASR by software segments: runtime, 
development, load, etc. Thus analy-
sis results in a collection of semi 
separable problems. 

Architectural 
synthesis 

Steps 2b: Choose an architec-
tural pattern that satisfies the 
architectural drivers; 2c: In-
stantiate modules and allocate 
functionality from the use 
cases using multiple views; 2d: 
Define interfaces of the child 
modules. 

The fourth part of Global Analysis, 
identifying solution strategies, is the 
beginning of arch. synthesis. Then 
strategies are instantiated as design 
decisions that determine the number 
and type of design elements for one of 
the software architecture views. Design 
decisions can be captured in a table.  

Gradually build during 
the elaboration phase 
architecture organized 
along 4 different 
views; in parallel 
implement an architec-
tural prototype. 

Elaborate the five CAFCR 
views, adding or refining 
artifacts suitable for the 
particular system 

Address the ASR, segment by seg-
ment in an iterative process, resolv-
ing conflicts between the ASR 
within the same segment and inte-
grating solutions from different 
segments. 

Architectural 
evaluation 

Step 2e: Verify and refine use 
cases and quality scenarios and 
make them constraints for the 
child modules.   Note: this step 
bridges evaluation and analy-
sis, preparing for the next 
iteration of ADD. 

S4V splits evaluation into global 
evaluation (done by the architect as the 
design progresses ) and architecture 
evaluation, led by a team of external 
reviewers, and done at major check-
points (e.g. to validate arch. concepts 
and after design is complete). 

Build an executable 
prototype architecture 
to assess whether 
architectural objec-
tives have been met, 
and risks retired 
(elaboration phase). 

Evaluation of the CAFCR 
views in the BAPO con-
text and quality attribute 
analysis across the 
CAFCR views 

Architectural decisions are evaluated 
with respect to ASR that they ad-
dress. Typical procedure of evalua-
tion may include model-based analy-
sis (LQN, Petri nets, Q nets) simula-
tion, prototyping, and discussion of 
change / use scenarios  

 
 

Table 2: Comparing methods: Artifacts 

Artifact ADD S4V RUP 4+1 BAPO/CAFCR ASC 

Architectural 
concerns 

Functional require-
ments, system quality 
attribute requirements, 
design constraints. 

Influencing factors are organizational, 
technological, and product factors. Prod-
uct factors, describing required charac-
teristics of the product, are always archi-
tectural concerns, so are technological 
factors (state of technology including 
standards) that could affect the product.  

Vision document, Supplemen-
tary specification (for non func-
tional requirements); the Risk 
List identifies, among others, 
technical issues: elements that 
are novel, unknown, or just 
perceived as challenging. 

These concerns are expressed 
in the Customer and Applica-
tion views. The overriding 
meta-concern is bridging the 
gap between customer needs, 
wishes, and objectives and 
technological realization. 

Each product family has lists of 
typical concerns that need to be 
addressed by products in the 
domain. Stakeholders contrib-
ute product specific concerns 
during product conception 
phase. 

Context Business quality goals 
(e.g., time to market, 
cost and benefit), 
architecture qualities 
(e.g., conceptual integ-
rity, buildability) 

Organizational factors (see above) are 
usually context, not concerns. 

Business case and Vision docu-
ment 

Business goals and con-
straints (including the scope 
of the market to be ad-
dressed), process goals and 
constraints, organizational 
goals and constraints 

Preferred technology platforms 
Technology/product road maps 
Product family functional and 
quality requirements 
System / hardware architecture 
Implementation constraints 
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Artifact ADD S4V RUP 4+1 BAPO/CAFCR ASC 

Architec-
turally  
significant 
requirements 
(ASR) 

Architectural drivers are the 
combination of functional, 
quality attribute, and busi-
ness requirements that 
“shape” the architecture. To 
identify them, locate the 
quality attribute scenarios 
that reflect the highest 
priority business goals and 
have the most impact on the 
decomposition. 

Issue cards describe issues or 
problems that arise from sets of 
factors that, taken together, pose 
significant architectural chal-
lenges. These issues and their 
influencing factors are equiva-
lent to the architecturally signifi-
cant requirements. 

ASR are identified out of 
the requirements docu-
ments (Vision, use case 
model, supplementary 
specification), and  the risk 
list. Some of the ASR are 
expressed in the form of 
scenarios (use case in-
stances) that are allocated 
as objectives in the upcom-
ing iteration; this forms a 
requirements view (+1). 

Those elements of the BAPO context 
that are relevant for the architectural fit 
and determine the scope of the architec-
ture. Traditional types of requirements 
are represented in the Customer and 
Application views, which can be influ-
enced by the architect in order to obtain 
a better BAPO fit. 
 

A specific process is used to 
identify ASR based on stake-
holder concerns, domain and 
product family specific check-
lists, and patterns for analysis. 
ASR are partitioned by seg-
ments of software transforma-
tion cycle to establish semi-
separable solution domains. 
ASR that are in the same seg-
ment are prioritized and ana-
lyzed for potential conflicts. 

Candidate 
architectural 
solutions 

A collection of views, 
patterns, and architectural 
tactics.  The architecture 
also has associated with it 
refined scenarios that show 
mapping from requirements 
to decisions and also aid the 
next iteration of design. 

Part of the four views (concep-
tual, module, execution, and 
code arch. views). These repre-
sent design decisions taken in 
accordance with strategies that 
solve one or more issues. Issue 
Cards capture the issues, their 
influencing factors, and solution 
strategies. Factors are listed and 
characterized in Factor Tables. 

Design decisions are in-
crementally captured in 
four views (logical, proc-
ess, implementation, de-
ployment), supplemented 
with a use-case view and 
with complementary texts, 
and plus  an architectural 
prototype.  

Consistent and partially complete 
CAFCR views (Customer, Application, 
Functional, Conceptual, and Realiza-
tion), filled with various artifacts (mod-
els, scenarios, interfaces, etc.) 

A collection of patterns, frame-
works, and reference architec-
tures constitute the source for 
alternative decisions. An often 
used practice is to analyze 
alternatives along with any 
proposed solutions. 

Validated 
architecture 

Architecture describes a 
system as containers for 
functionality and interac-
tions among the containers, 
typically expressed in three 
views: module decomposi-
tion., concurrency, and 
deployment. The architec-
ture is validated for satis-
faction of require-
ments/constraints with 
respect to the decomposi-
tion.   

The description of the four 
views, the Issue Cards, and the 
Factor Tables represent the 
validated architecture. 

Baseline a complete, ex-
ecutable architectural 
prototype at the end of the 
elaboration phase. This 
prototype is complete 
enough to be tested, and to 
validate that major archi-
tectural objectives (func-
tional and non functional, 
such as performance) have 
been met, and major tech-
nical risks mitigated. 

Consistent and complete CAFCR 
views. Consistent in the sense that these 
artifacts are mutually corresponding 
and quality attribute analysis shows no 
discrepancies (for example, all quality 
requirements from the Application view 
are satisfied by the Conceptual and 
Realization views).  Complete in the 
sense that artifacts have been suffi-
ciently elaborated to enable realization.  

Concepts, structure and texture 
for each significant segment of 
software transformation cycle 
(development / load/ runtime) 

Backlog  Information to be processed 
in subsequent steps includ-
ing:  
requirements to be ana-
lyzed, decisions to be 
merged, patterns to be 
instantiated, requirements 
to be verified and refined. 

Supported in part by Issue 
Cards, which  help the architect 
identify important issues to 
address and drive the bigger 
iterations through the activities.  
Issue Cards are intended to be 
permanent artifacts. S4V also 
recommends the capture of 
certain inputs to the backlog: 
Issue Cards can capture strate-
gies (ideas) that don’t work. 

In larger projects, an Issue 
List is maintained, which 
contains elements of the 
backlog. Architectural 
objectives are allocated to 
upcoming iterations, and 
captured in the form of 
iteration objectives in the 
iteration plan. 

Worry List contains: Artifacts to be 
completed; Quality attributes to be 
analyzed; Quality requirements to be 
satisfied; BAPO analysis to be done; 
BAPO issues to be improved. Design 
knowledge comes from the architect (or 
organizational memory or community 
best practice) and is recorded as an 
influencing factor. A large amount of 
general architectural knowledge is 
documented in the Gaudì website [24]. 

The initial backlog is a result of 
the analysis. As the design 
progresses ASR are partitioned 
into solvable problems and 
some are left on the backlog to 
be addressed later while some 
are being addressed earlier. 
Thus entries in the backlog 
represent finer and finer 
grained problems or issues. 
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Once a backlog item (or a small set of backlog 
items) is picked by the architects, they will proceed to 
incrementally do architectural synthesis, making some 
design decisions and integrating them with the existing 
set of design decisions. Thus it serves to set the objec-
tives for a particular iteration of architectural synthesis. 
Less frequently, backlog items will drive architectural 
analysis or architectural evaluation. Once resolved, an 
item is removed from the backlog, and the architects 
proceed to the next one. If they encounter some diffi-
culty or some input is missing, the item is returned to 
the backlog. 

Thus the backlog is constantly changing. The cycle 
of adding to the backlog, reprioritizing, resolving an 
item, and removing an item is happening at various 
periods: from a few hours, to a few days, or more.  

This backlog is similar to what some Agile meth-
ods use, in particular Scrum [29]. It guides the work-
flow through the three kinds of activities and provides 
the objectives for each iteration through the synthesis 
activity. In addition to using some kind of backlog, the 
architect should also make sure that each iteration of 
each activity is preceded by the setting of objectives for 
that step. 

4. Method Comparison using the General 
Model 

The five architectural methods have been devel-
oped independently but there are many commonalities 
among them.  

  
4.1. Side-by-side comparison 
See Tables 1 & 2 for a comparison of activities and 
artifacts By putting the methods side by side, we are 

working to identify and understand this commonality 
as well as the important differences.  The rows of the 
table are based on the activities and artifacts identified 
in the general model of the previous section. 

This comparison has been an iterative process of 
producing a common model of design activities and 
artifacts, seeing how well they relate to the methods, 
and adjusting the models.  We take a broad view of 
architectural design activities and see that the methods 
address interrelated activities centered on analysis, syn-
thesis, and evaluation.   

The steps of ADD follow the sequence of analysis, 
synthesis, and evaluation activities.  Subsequent itera-
tions of the activities follow the decomposition of the 
architecture – the order of which will vary (e.g., depth-
first, breadth-first) based on the business context, do-
main knowledge, or technology. 

Global Analysis from S4V plays a large role in 
analysis and in driving iterations through the activities. 
Thus it spans architectural analysis, architectural syn-
thesis, the backlog, and describes how architectural 
concerns, context, ASRs, and some backlog items 
should be recorded. The Global Analysis artifacts, de-
sign decision table, and tables that record the relation-
ships among views support traceability from require-
ments to the code (at the file and module level). 
 
4.2. Commonalities 
Elements the methods have in common include: 
 an emphasis on quality attribute requirements and the 
need to aid the architect in focusing on the important 
requirements that impact the architecture during 
analysis, 

 design elements organized into multiple views dur-
ing synthesis, 

 and an iterative fine-grained evaluation activity (per-
formed internally after each synthesis result by the 
architect) as distinct from course-grained evaluation 
(architectural reviews performed at key stages in the 
software development life-cycle). 

 
4.3. Variations 
There are also important variations between the meth-
ods: 
 Intent – ADD was developed as a design approach 
based on making a series of design decisions (aided 
by the application of architectural tactics).  Other 
view-based approaches were initially centered on de-
sign artifacts, with their dependencies suggesting a 
sequencing of activities.  4+1 embedded in RUP pro-
vides full process support. BAPO/CAFCR has been 
especially developed to support the development of 
product families. 
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Figure 2: Backlog 
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 Emphasis – RUP puts a strong emphasis on incre-
mentally building an evolutionary prototype, forcing 
the designers to a more experimental style of archi-
tectural design.  BAPO/CAFCR is putting a strong 
emphasis on the scoping of the architecture and once 
the scope of the architecture using a BAPO analysis 
has been established, the focus is on ensuring the 
consistency and the completeness of the CAFCR 
views.  ADD puts its emphasis on constructing the 
architecture by applying architectural tactics (design 
options for the architect that are influential in the 
control of a quality attribute response). 

 Driving forces – ADD is quality attribute scenario 
focused; experience suggests that a handful of these 
shape the architecture and all other requirements are 
then mapped to this structure. This fact is also recog-
nized in ASC, which ties architecture design to archi-
tecturally significant requirements. ASR are broader 
than quality attributes and may include key func-
tional requirements. RUP is mostly driven by risk 
mitigation. 

 Architectural Scope – ASC recognizes a hierarchy 
of architectural scopes like product portfolio, product 
family, a single product, and a product release. Each 
architecture design project uses enclosing scope as 
the context of the design. 

 Process Scope – ADD provides a step for choosing 
the architectural drivers but its scope is such that it 
depends on more analysis types of activities from 
other methods, such as global analysis from S4V. 
However, S4V does not recommend or advocate 
specific evaluation techniques. Thus ADD and S4V 
complement each other in these respects. 

 Description – Although four specific views are rec-
ommended, the view-related aspects of S4V are lim-
ited to the second part of arch synthesis. Thus other 
views could be substituted or added while still using 
all the other parts of S4V. The views used for archi-
tecture design in ASC are tied to architectural struc-
tures that are important for the specific system, 
which in turn, are determined by the ASR. Thus ASC 
offers a process to determine which views should be 
used for architecture design of a specific system.  
The views used in ADD are determined by the ASR, 
though typically there is one for each of the three 
kinds of viewtypes: module, component & connec-
tor, and allocation [6]. 

5. Related Work 

We have found four main approaches to compar-
ing design methods. Some researchers compare the 
methods by comparing their results or artifacts. Others 
compare the activities done when following the meth-
ods. Each of these approaches breaks down further into 

comparisons based on applying the methods to a par-
ticular example application, or comparing the methods 
by classifying the artifacts or activities. 

The first group compares the artifacts for an ex-
ample application. Bahill et al. [3] first provide a 
“benchmark” application to be used for comparing 
design methods. Then they provide a qualitative analy-
sis of the results of applying eleven design methods to 
the benchmark application. Sharble & Cohen  [30] use 
complexity metrics to compare the class diagrams that 
result from applying two different OO development 
methods on a brewery application. 

The next group also compares artifacts, but by 
classifying them according to what they can model. 
Wieringa  [35] does this for a number of structured and 
OO specification methods, and Hong et al. [17] do this 
as part of their comparison of six OO analysis and de-
sign methods. 

The third kind of comparison examines the activi-
ties undertaken when designing particular applications. 
Kim & Lerch [20] measure the cognitive activities of 
designers when using an OO design method versus a 
functional decomposition approach. Each participant in 
this study designed two variants of a Towers of Hanoi 
application. 

The approach we take in this paper falls into the 
fourth category, characterizing and classifying activi-
ties then comparing them across methods. Song & Os-
terweil [31] use process modeling techniques to model 
the activities and, to a lesser extent, the artifacts of the 
methodologies. Although this approach is similar to 
ours, the approaches differ in the development of the 
comparison model. They decompose the activities of 
each methodology, then classify and compare them. 
Thus the classification and comparison is begun with 
the low-level elements. In contrast we create a general 
model where only one level of decomposition is done, 
resulting in the three activities of architectural analysis, 
synthesis, and evaluation and the corresponding arti-
facts. We then determine which elements of each 
methodology map to these activities and artifacts, and 
compare to what extent each methodology covers the 
various aspects of the activities and artifacts. 

Hong et al. [17] also compare activities by first 
characterizing and classifying them. They repeatedly 
decompose the activities of each method, then create a 
“super-methodology” that is a union of all the finest 
granularity of the subactivities. Each method is com-
pared to the super-methodology. Fichman & Kemerer 
[10] take a similar approach, comparing methods using 
the eleven analysis activities and ten design activities 
that are the superset of the activities supported by 
methods. Both of these approaches decompose the ac-
tivities to very specific tasks that are tightly related to 
the artifacts produced by the method (e.g. Identify 
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classes, Identify inheritance relationships). We did not 
want our general model to be restricted by the kinds of 
artifacts our five methods produce (e.g. specific views 
used by the method), so we did not decompose activi-
ties to the low level. 

Dobrica & Niemela’s approach to comparing 
methods is perhaps closest to ours [9]. However, rather 
than comparing architectural design methods, they are 
comparing methods for software architecture evalua-
tion. Thus the eight methods have a much narrower 
scope, and in addition a number of them are variants of 
each other. Like us they compare activities and work-
flow at a fairly coarse granularity, but they add a few 
other dimensions for comparison, such as scope of 
method, stakeholders involved, etc. 

In [23] Kruchten shows that if software engineers 
were to use the term “design” analogously to the way 
other engineers use it, design would include “some 
requirements activities and all coding and testing ac-
tivities.” In a similar spirit, our use of the term “archi-
tecture design” encompasses analysis and evaluation 
activities. Architectural synthesis, the activity that goes 
from the problem space to the solution space is what 
others might equate with the term “architecture de-
sign.” In [11] Fowler discusses the importance of 
analysis, or understanding the problem, in moving from 
the problem space to the solution space. Roshandel et 
al. [28] reinforce our conviction that evaluation is an 
integral part of architecture design. They demonstrate 
that the kinds of automated evaluation possible depend 
on the architectural view described (where each of the 
two views studied is represented in a different ADL). 

Finally we note that our general model and the 
methods it is derived from are for the architecture de-
sign of new systems, not for evolving or reconstructing 
the architecture of existing systems. While parts of the 
model may be relevant for architecture evolution, when 
comparing our model to the Symphony architecture 
reconstruction process [34] we see that the activities 
and artifacts are not related at all. In both cases the 
activities can be categorized into 1) understand the 
problem, 2) solve it, and 3) evaluate the solution, but 
the same can be said of nearly any problem-solving 
activity. 

6. Conclusion 

In this paper we have analyzed a number of indus-
trially validated architectural design methods. Using a 
general model for architectural design activity, we have 
identified the common and variable ingredients of these 
methods. Despite the different vocabulary used for the 
individual methods they have a lot in common at the 
conceptual level. The basic architecting activities, like 
architectural analysis, architectural synthesis and archi-

tectural evaluation are present in all of the investigated 
methods. The major variation can be observed in the 
different details with respect to guidance and process 
focus across the various methods. Here the concept of 
backlog is crucial to relate the various activities.   

For our general model many of the concepts we 
use are already part of the IEEE 1471 [18] vocabulary: 
views, architectural concerns, context, stakeholders, 
etc. Our more process-oriented model introduces the 
following concepts: backlog, analysis, synthesis and 
evaluation.  

An important part of our model is the inclusion of 
analysis and evaluation activities as part of architecture 
design. While architecture evaluation has been the fo-
cus of much prior work, the emphasis is typically on 
identifying candidate architectures or evaluating the 
completed architecture. There has been far less work 
on incremental or ongoing evaluation, and on architec-
tural analysis. Our model reveals these to be important 
research topics. 

Our model also introduces the concept of a back-
log as the driving force behind the workflow. The 
backlog is a much richer workflow concept than simply 
noting that iteration is expected. 

We hope that our increased understanding of the 
commonalities and differences of the various ap-
proaches will contribute to future methods that com-
bine the strong points of the existing ones and provide 
specific support for software architecture design in a 
large variety of different contexts. As an example, two 
of the authors looked at ways of combining ADD and 
RUP 4+1 by modeling ADD as a RUP activity, and 
found that they complement each other well [19]. ADD 
fills a need within the RUP: it provides a step-by-step 
approach for defining a candidate architecture. The 
RUP fills a need in the ADD by placing it in a life-
cycle context; the RUP provides guidance on how to 
proceed from the candidate architecture to an executa-
ble architecture, detailed design and implementation. 
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