
Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5).
Pittsburgh, PA, November 6-9, 2005. Named one of the five best papers of the conference.

1

Generalizing a Model of Software Architecture Design
from Five Industrial Approaches

Christine Hofmeister
Lehigh University

Bethlehem, PA, USA
crh@eecs.lehigh.edu

Philippe Kruchten
University of British Columbia

Vancouver, B.C., Canada
pbk@ece.ubc.ca

Robert L. Nord
Software Engineering Institute

Pittsburgh, PA, USA
rn@sei.cmu.edu

Henk Obbink
Philips Research Labs

Eindhoven, The Netherlands
henk.obbink@philips.com

Alexander Ran
Nokia

Burlington, MA, USA
alexander.ran@nokia.com

Pierre America
Philips Research Labs

Eindhoven, The Netherlands
pierre.america@philips.com

Abstract

We compare five industrial software architecture
design methods and we extract from their commonal-
ities a general software architecture design approach.
Using this general approach, we compare across the
five methods the artifacts and activities they use or
recommend, and we pinpoint similarities and differ-
ences. Once we get beyond the great variance in termi-
nology and description, we find that the 5 approaches
have a lot in common and match more or less the
“ideal” pattern we introduced.

1. Introduction

Over the last 15 years a number of organizations
and individual researchers have developed and docu-
mented techniques, processes, guidelines, and best
practices for software architecture design [4, 5, 6, 7, 8,
12, 15]. Some of these were cast and published as ar-
chitecture design methods or systems of concepts,
processes and techniques for architecture design [16,
22, 26, 27].

Since many of the design methods were developed
independently, their descriptions use different vocabu-
lary and appear quite different from each other. Some
of the differences are essential. Architecture design
methods that were developed in different domains
naturally exhibit domain characteristics and emphasize
different goals. For example architectural design of
information systems emphasizes data modeling, and
architecture design of telecommunication software is
concerned with continuous operation, live upgrade and
interoperability. Other essential differences may in-
clude methods designed for large organization vs.
methods suitable for a team of a dozen software devel-

opers, methods with explicit support for product fami-
lies vs. methods for one of a kind systems, etc.

On the other hand, all software architecture design
methods must have much in common as they deal with
the same basic problem: maintaining intellectual con-
trol over the design of large software systems that: re-
quire involvement of and negotiation among multiple
stakeholders; are developed by large, often distributed
teams over extended periods of time; and have to ad-
dress multiple possibly conflicting goals and concerns.

It is thus of significant interest to understand the
commonalities that exist between different methods
and to develop a general model of architecture design.
Such a model would help us better understand the
strengths and weaknesses of different existing methods
as well as provide a framework for developing new
methods better suited to specific application domains.

With this goal in mind, we selected five different
methods: Attribute-Driven Design (ADD) Method [4],
developed at the SEI; Siemens’ 4 Views (S4V) method
[16], developed at Siemens Corporate Research; the
Rational Unified Process 4 + 1 views (RUP 4+1) [21,
22] developed and commercialized by Rational Soft-
ware, now IBM; Business Architecture Process and
Organization (BAPO) developed primarily at Philips
Research [1, 26], and Architectural Separation of Con-
cerns (ASC) [27] developed at Nokia Research. We
also assembled a team of people who have made sig-
nificant contributions to developing and documenting
at least one of the methods. Through extensive discus-
sions focused on how typical architecture design tasks
are accomplished by different methods, we have ar-
rived at a joint understanding of a general software
architecture design model that underlies the five meth-
ods. In this paper we document our understanding of

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5).
Pittsburgh, PA, November 6-9, 2005. Named one of the five best papers of the conference.

2

what seems to be fundamental about architecture de-
sign.

This paper is organized as follows. We introduce
the five contributing methods in Section 2. Then in
Section 3 we present a general model of architecture
design. Section 4describes the five contributing meth-
ods using terms and concepts of the general model, and
discusses the commonalities and differences between
the contributing methods. Section 5 discusses related
work, and Section 6 concludes the paper.

2. Five Industrial Software Architecture
Design Methods

2.1. Attribute-Driven Design
The Attribute-Driven Design (ADD) method [4],

developed at the SEI, is an approach to defining soft-
ware architectures by basing the design process on the
architecture’s quality attribute requirements. It follows
a recursive decomposition process where, at each stage
in the decomposition, architectural tactics and patterns
are chosen to satisfy a set of quality attribute scenarios.

In ADD, the architects, for each module to decom-
pose, 1) choose the architectural drivers, 2) choose an
architectural pattern that satisfies the drivers, 3) instan-
tiate modules and allocate functionality from use cases,
and represent the results using multiple views, 4) de-
fine interfaces of the child modules, and 5) verify and
refine the use cases and quality scenarios, making them
constraints for the child modules.

2.2. Siemens’ 4 views

The Siemens Four-Views (S4V) method [16, 32],
developed at Siemens Corporate Research, is based on
best architecture practices for industrial systems. The
four views (conceptual, execution, module and code
architecture view), separate different engineering con-
cerns, thus reducing the complexity of the architecture
design task.

These views are developed in the context of a re-
curring Global Analysis activity. For Global Analysis,
the architect identifies the organizational, technologi-
cal, and product factors that influence the architecture:
requirements, desired system qualities, organizational
constraints, existing technology, etc. From these the
key architectural issues or challenges are identified;
typically they arise from a set of factors that, taken
together, will be difficult to fulfill. Design strategies
are proposed to solve the issue, and they are applied to
one or more of the views. In addition to interleaving
Global Analysis with the view design, the architect is
expected to iterate among the design tasks of the four
views.

2.3. RUP’s 4+1 Views
The Rational Unified Process (RUP) is a software

development process developed and commercialized
by Rational Software, now IBM. RUP includes an ar-
chitectural design method, using the concept of 4+1
views (RUP 4+1) [21, 22]; four views to describe the
design: logical view, process view, implementation
view and deployment view, using a use-case view to
relate the design to the context and goals.

In RUP, architectural design is spread over several
iterations in an elaboration phase, iteratively populating
the 4 views, driven by architecturally significant use
cases, nonfunctional requirements in the supplementary
specification, and risks. Each iteration results in an
executable architectural prototype, which is used to
validate the architectural design.

2.4. Business Architecture Process and Organi-

zation
The BAPO/CAFCR approach [1, 24, 26, 33], de-

veloped primarily by Philips Research, aims at devel-
oping an architecture (the A in BAPO) for software-
intensive systems that fits optimally in the context of
business (B), process (P), and organization (O). For
that purpose, the five CAFCR views are described:
Customer, Application, Functional, Conceptual, and
Realization. These views bridge the gap between cus-
tomer needs, wishes, and objectives on the one hand
and technological realization on the other hand.

In BAPO/CAFCR, the architect iteratively: 1) fills
in information in one of the CAFCR views, possibly in
the form of one of the suggested artifacts; 2) analyzes a
particular quality attribute across the views to establish
a link between the views and with the surrounding
business, processes and organization. The architecture
is complete when there is sufficient information to real-
ize the system and the quality attribute analysis shows
no discrepancies.

2.5. Architectural Separation of Concerns

Architectural Separation of Concerns (ASC) or
ARES System of Concepts [27], developed primarily
by Nokia, is a conceptual framework based on separa-
tion of concerns to manage complexity of architecture
design. ASC relies on the fact that concerns related to
different segments of the software transformation cycle
(typically including design, build, upgrade, load, and
run time) are often separable. In addition to design of
architectural structures for each segment, ASC pays
special attention to design of texture – replicated mi-
crostructure that addresses concerns that cannot be lo-
calized within the main structure.

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5).
Pittsburgh, PA, November 6-9, 2005. Named one of the five best papers of the conference.

3

In ASC, the architect analyses design inputs, such
as preferred technology platforms, road maps, func-
tional and quality requirements for the product family
and the product, and using a palette of techniques, pro-
duces and prioritizes ASR (architecturally significant
requirements), groups ASR by segments of the soft-
ware transformation cycle that they address. Implemen-
tation (write-time) design addresses the ASR con-
cerned with the write-time segment. Design decisions
make implementation technology choices, partition
functional requirements between different architectural
scopes of product portfolio, product family, or single
product, establish portability layers for multiplatform
products, allocate classes of functional requirements to
different subsystems, and develop description of the
API facilitating work division and outsourcing. Per-
formance (run-time) design deals with run-time ASR
addressing concurrency and protection, develops per-
formance models and makes decisions regarding task
and process partitions, scheduling policies, resource
sharing and allocation. Finally, delivery/installation/
upgrade design decisions address the ASR of the corre-
sponding segments. Typical decisions address parti-
tions into separately loadable/executable units, installa-
tion support, configuration data, upgrade/downgrade
policies and mechanisms, management of shared com-
ponents, external dependencies and compatibility re-
quirements.

3. A General Model for Software Architec-
ture Design

The general model for software architecture design
we developed first classifies the kinds of activities per-
formed during design. Architectural analysis articulates
architecturally significant requirements (ASRs) based
on the architectural concerns and context. Architectural
synthesis results in candidate architectural solutions
that address these requirements. Architectural evalua-
tion ensures that the architectural decisions used are the

right ones (see Figure 1).
Because of the complexity of the design task, these

activities are not executed sequentially. Instead they
are used repeatedly, at multiple levels of granularity,
until the architecture is complete and validated. Thus
the second part of the general model is a characteriza-
tion of its workflow.

The key requirement of our model was that it be
general enough to fit our five architecture design meth-
ods, and provide a useful framework for comparing
them. One strong influence on the activities in our
model was Gero’s Function-Behavior-Structure
framework for engineering design [13, 14], which
Kruchten applies to software design in [23].

3.1. Architectural Design Activities & Artifacts

First we describe the main activities of the model,
and their related artifacts.

Architectural concerns: The IEEE 1471 standard
defines architectural concerns as “those interests which
pertain to the system’s development, its operation or
any other aspects that are critical or otherwise impor-
tant to one or more stakeholders. Concerns include
system considerations such as performance, reliability,
security, distribution, and evolvability” [18]. Most ar-
chitectural concerns are expressed as requirements on
the system, but they can also include mandated design
decisions (e.g., use of existing standards). Regulatory
requirements may also introduce architectural con-
cerns.

Context: According to IEEE 1471, “a system’s …
environment, or context, determines the setting and
circumstances of developmental, operational, political,
and other influences upon that system” [18]. This in-
cludes things like business goals (e.g., buy vs. build),
characteristics of the organization (e.g., skills of devel-
opers, development tools available), and the state of
technology. Note that sometimes the only distinction
between a concern and a context is whether it is spe-
cifically desired for this system (a concern) or is in-

Figure 1: Architectural design activities

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5).
Pittsburgh, PA, November 6-9, 2005. Named one of the five best papers of the conference.

4

stead a general characteristic or goal of the organiza-
tion or a stakeholder (context). For example, a business
goal of the architecture is a concern, whereas a busi-
ness goal of the enterprise is context.

Architecturally-Significant Requirements: An
ASR is “a requirement upon a software system which
influences its architecture” [25]. Not all of the system’s
requirements will be relevant to the architecture. Con-
versely, not all ASRs will have originally been ex-
pressed as requirements: they may arise from other
architectural concerns or from the system context.

Architectural analysis: Architectural analysis
serves to define the problems the architecture must
solve. This activity examines architectural concerns
and context in order to come up with a set of ASRs.

Candidate architectural solutions: Candidate ar-
chitectural solutions may present alternative solutions,
and/or may be partial solutions (i.e., fragments of an
architecture). They reflect design decisions about the
structure of software. The architectural solutions in-
clude information about the design rationale, that is,
commentary on why decisions where made, what deci-
sions were considered and rejected, and traceability of
decisions to requirements.

Architectural synthesis: Architectural synthesis
is the core of architecture design. This activity pro-
poses architecture solutions to a set of ASRs, thus it
moves from the problem to the solution space.

Validated architecture: The validated architec-
ture consists of those candidate architectural solutions
that are consistent with the ASRs. These solutions must
also be mutually consistent. Only one of a set of alter-
native solutions can be present in the validated archi-
tecture. The validated architecture, like the candidate
architectural solutions, includes information about the
design rationale.

Architectural evaluation: Architectural evalua-
tion ensures that the architectural design decisions
made are the right ones. The candidate architectural
solutions are measured against the ASRs. Although
multiple iterations are expected, the eventual result of
architectural evaluation is the validated architecture.
Intermediate results would be the validation or invali-
dation of candidate architectural solutions.

In addition to the above-described artifacts used in
the design activities, there are some less explicit inputs
that are critical to the design process:
 Design knowledge comes from the architect, from
organizational memory, or from the architecture
community. It can take the form of styles, patterns,
frameworks, reference architectures, ADLs, product-
line technologies, etc.

 Analysis knowledge is needed to define the problem
and evaluate the solution. Some work exists in
analysis patterns [11] and analytic models associated

with design fragments [2]. Knowledge of the evalua-
tion process itself (e.g., workflow, methods and
techniques) [25] can also be an important input.

 Knowledge necessary to produce the system (tech-
nologies, components, project management). In
many cases analysis knowledge is not sufficient to
evaluate the architecture. One example is when a
partial implementation is needed upon which to do
experimentation. In general the design must be
evaluated using realization knowledge, in order to
ensure that the system can be built.

3.2. Workflow

In all five of the architectural methods on which
our model is based, the three main activities in Figure 1
(architectural analysis, architectural synthesis, and ar-
chitectural evaluation) do not proceed sequentially, but
rather proceed in small leaps and bounds as architects
move constantly from one to another, “growing” the
architecture progressively over time. This is primarily
because it is not possible to analyze, resolve, find solu-
tions and evaluate the architecture for all architectural
concerns simultaneously: the range and number of in-
terrelated issues is just too overwhelming for the hu-
man mind, and moreover the inputs (goals, constraints,
etc) are usually ill-defined and only get better under-
stood or discovered as the architecture starts to emerge.

To drive this apparently haphazard process, archi-
tects maintain, implicitly or explicitly, a backlog of
smaller needs, issues, problems they need to tackle and
ideas they might want to use. The backlog drives the
workflow, helping the architect determine what to do
next. It is not an externally visible, persistent artifact;
on small projects it may only be a list in the architect’s
notebook, while for larger projects it might be an elec-
tronic, shared spreadsheet. See Figure 2.

The backlog is fed by: a) selecting some architec-
tural concern and/or ASR from architectural analysis,
b) negative feedback in the form of issues or problems
arising from architectural evaluation, and to a lesser
extent, c) ideas from the architect’s experience, discus-
sions, readings, etc. A backlog item can be thought of
as a statement of the form:
 “We need to make a decision about X.”
 or “We should look at Y in order to address Z.”

The backlog is constantly prioritized, bringing to
the front the items that seem most urgent. The tactics
for prioritization will vary, mostly based on external
forces. These forces include risks to mitigate, upcom-
ing milestones, team pressure to start work on a part of
the system, or simply perception of greater difficulty.
Very often it is simply the need to relieve pressure
from a stakeholder that drives an item to the top of the
backlog.

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5). Pittsburgh, PA, November 6-9,
2005. Named one of the five best papers of the conference.

5

Table 1 – Comparing methods: Activities

Activity ADD S4V RUP 4+1 BAPO/CAFCR ASC

Architectural
analysis

Step 2a: Choose the architec-
tural drivers.
Quality attribute models help
elicit and structure the re-
quirements.

Global Analysis involves 1) identifying
influencing factors; 2) analyzing them
to identify their importance to the ar-
chitecture, flexibility, and change-
ability; 3) identifying key issues or
problems that arise from a set of factors

Build or extract a
subset of the use case
model as key drivers
for architectural de-
sign

BAPO analysis identifies
those elements of the
BAPO context that are
relevant for the architec-
tural fit and determine the
scope of the architecture

Concept definition, identification
and refinement of ASR, partition of
ASR by software segments: runtime,
development, load, etc. Thus analy-
sis results in a collection of semi
separable problems.

Architectural
synthesis

Steps 2b: Choose an architec-
tural pattern that satisfies the
architectural drivers; 2c: In-
stantiate modules and allocate
functionality from the use
cases using multiple views; 2d:
Define interfaces of the child
modules.

The fourth part of Global Analysis,
identifying solution strategies, is the
beginning of arch. synthesis. Then
strategies are instantiated as design
decisions that determine the number
and type of design elements for one of
the software architecture views. Design
decisions can be captured in a table.

Gradually build during
the elaboration phase
architecture organized
along 4 different
views; in parallel
implement an architec-
tural prototype.

Elaborate the five CAFCR
views, adding or refining
artifacts suitable for the
particular system

Address the ASR, segment by seg-
ment in an iterative process, resolv-
ing conflicts between the ASR
within the same segment and inte-
grating solutions from different
segments.

Architectural
evaluation

Step 2e: Verify and refine use
cases and quality scenarios and
make them constraints for the
child modules. Note: this step
bridges evaluation and analy-
sis, preparing for the next
iteration of ADD.

S4V splits evaluation into global
evaluation (done by the architect as the
design progresses) and architecture
evaluation, led by a team of external
reviewers, and done at major check-
points (e.g. to validate arch. concepts
and after design is complete).

Build an executable
prototype architecture
to assess whether
architectural objec-
tives have been met,
and risks retired
(elaboration phase).

Evaluation of the CAFCR
views in the BAPO con-
text and quality attribute
analysis across the
CAFCR views

Architectural decisions are evaluated
with respect to ASR that they ad-
dress. Typical procedure of evalua-
tion may include model-based analy-
sis (LQN, Petri nets, Q nets) simula-
tion, prototyping, and discussion of
change / use scenarios

Table 2: Comparing methods: Artifacts

Artifact ADD S4V RUP 4+1 BAPO/CAFCR ASC

Architectural
concerns

Functional require-
ments, system quality
attribute requirements,
design constraints.

Influencing factors are organizational,
technological, and product factors. Prod-
uct factors, describing required charac-
teristics of the product, are always archi-
tectural concerns, so are technological
factors (state of technology including
standards) that could affect the product.

Vision document, Supplemen-
tary specification (for non func-
tional requirements); the Risk
List identifies, among others,
technical issues: elements that
are novel, unknown, or just
perceived as challenging.

These concerns are expressed
in the Customer and Applica-
tion views. The overriding
meta-concern is bridging the
gap between customer needs,
wishes, and objectives and
technological realization.

Each product family has lists of
typical concerns that need to be
addressed by products in the
domain. Stakeholders contrib-
ute product specific concerns
during product conception
phase.

Context Business quality goals
(e.g., time to market,
cost and benefit),
architecture qualities
(e.g., conceptual integ-
rity, buildability)

Organizational factors (see above) are
usually context, not concerns.

Business case and Vision docu-
ment

Business goals and con-
straints (including the scope
of the market to be ad-
dressed), process goals and
constraints, organizational
goals and constraints

Preferred technology platforms
Technology/product road maps
Product family functional and
quality requirements
System / hardware architecture
Implementation constraints

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5). Pittsburgh, PA, November 6-9, 2005.
Named one of the five best papers of the conference.

6

Artifact ADD S4V RUP 4+1 BAPO/CAFCR ASC

Architec-
turally
significant
requirements
(ASR)

Architectural drivers are the
combination of functional,
quality attribute, and busi-
ness requirements that
“shape” the architecture. To
identify them, locate the
quality attribute scenarios
that reflect the highest
priority business goals and
have the most impact on the
decomposition.

Issue cards describe issues or
problems that arise from sets of
factors that, taken together, pose
significant architectural chal-
lenges. These issues and their
influencing factors are equiva-
lent to the architecturally signifi-
cant requirements.

ASR are identified out of
the requirements docu-
ments (Vision, use case
model, supplementary
specification), and the risk
list. Some of the ASR are
expressed in the form of
scenarios (use case in-
stances) that are allocated
as objectives in the upcom-
ing iteration; this forms a
requirements view (+1).

Those elements of the BAPO context
that are relevant for the architectural fit
and determine the scope of the architec-
ture. Traditional types of requirements
are represented in the Customer and
Application views, which can be influ-
enced by the architect in order to obtain
a better BAPO fit.

A specific process is used to
identify ASR based on stake-
holder concerns, domain and
product family specific check-
lists, and patterns for analysis.
ASR are partitioned by seg-
ments of software transforma-
tion cycle to establish semi-
separable solution domains.
ASR that are in the same seg-
ment are prioritized and ana-
lyzed for potential conflicts.

Candidate
architectural
solutions

A collection of views,
patterns, and architectural
tactics. The architecture
also has associated with it
refined scenarios that show
mapping from requirements
to decisions and also aid the
next iteration of design.

Part of the four views (concep-
tual, module, execution, and
code arch. views). These repre-
sent design decisions taken in
accordance with strategies that
solve one or more issues. Issue
Cards capture the issues, their
influencing factors, and solution
strategies. Factors are listed and
characterized in Factor Tables.

Design decisions are in-
crementally captured in
four views (logical, proc-
ess, implementation, de-
ployment), supplemented
with a use-case view and
with complementary texts,
and plus an architectural
prototype.

Consistent and partially complete
CAFCR views (Customer, Application,
Functional, Conceptual, and Realiza-
tion), filled with various artifacts (mod-
els, scenarios, interfaces, etc.)

A collection of patterns, frame-
works, and reference architec-
tures constitute the source for
alternative decisions. An often
used practice is to analyze
alternatives along with any
proposed solutions.

Validated
architecture

Architecture describes a
system as containers for
functionality and interac-
tions among the containers,
typically expressed in three
views: module decomposi-
tion., concurrency, and
deployment. The architec-
ture is validated for satis-
faction of require-
ments/constraints with
respect to the decomposi-
tion.

The description of the four
views, the Issue Cards, and the
Factor Tables represent the
validated architecture.

Baseline a complete, ex-
ecutable architectural
prototype at the end of the
elaboration phase. This
prototype is complete
enough to be tested, and to
validate that major archi-
tectural objectives (func-
tional and non functional,
such as performance) have
been met, and major tech-
nical risks mitigated.

Consistent and complete CAFCR
views. Consistent in the sense that these
artifacts are mutually corresponding
and quality attribute analysis shows no
discrepancies (for example, all quality
requirements from the Application view
are satisfied by the Conceptual and
Realization views). Complete in the
sense that artifacts have been suffi-
ciently elaborated to enable realization.

Concepts, structure and texture
for each significant segment of
software transformation cycle
(development / load/ runtime)

Backlog Information to be processed
in subsequent steps includ-
ing:
requirements to be ana-
lyzed, decisions to be
merged, patterns to be
instantiated, requirements
to be verified and refined.

Supported in part by Issue
Cards, which help the architect
identify important issues to
address and drive the bigger
iterations through the activities.
Issue Cards are intended to be
permanent artifacts. S4V also
recommends the capture of
certain inputs to the backlog:
Issue Cards can capture strate-
gies (ideas) that don’t work.

In larger projects, an Issue
List is maintained, which
contains elements of the
backlog. Architectural
objectives are allocated to
upcoming iterations, and
captured in the form of
iteration objectives in the
iteration plan.

Worry List contains: Artifacts to be
completed; Quality attributes to be
analyzed; Quality requirements to be
satisfied; BAPO analysis to be done;
BAPO issues to be improved. Design
knowledge comes from the architect (or
organizational memory or community
best practice) and is recorded as an
influencing factor. A large amount of
general architectural knowledge is
documented in the Gaudì website [24].

The initial backlog is a result of
the analysis. As the design
progresses ASR are partitioned
into solvable problems and
some are left on the backlog to
be addressed later while some
are being addressed earlier.
Thus entries in the backlog
represent finer and finer
grained problems or issues.

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5).
Pittsburgh, PA, November 6-9, 2005. Named one of the five best papers of the conference.

7

Once a backlog item (or a small set of backlog
items) is picked by the architects, they will proceed to
incrementally do architectural synthesis, making some
design decisions and integrating them with the existing
set of design decisions. Thus it serves to set the objec-
tives for a particular iteration of architectural synthesis.
Less frequently, backlog items will drive architectural
analysis or architectural evaluation. Once resolved, an
item is removed from the backlog, and the architects
proceed to the next one. If they encounter some diffi-
culty or some input is missing, the item is returned to
the backlog.

Thus the backlog is constantly changing. The cycle
of adding to the backlog, reprioritizing, resolving an
item, and removing an item is happening at various
periods: from a few hours, to a few days, or more.

This backlog is similar to what some Agile meth-
ods use, in particular Scrum [29]. It guides the work-
flow through the three kinds of activities and provides
the objectives for each iteration through the synthesis
activity. In addition to using some kind of backlog, the
architect should also make sure that each iteration of
each activity is preceded by the setting of objectives for
that step.

4. Method Comparison using the General
Model

The five architectural methods have been devel-
oped independently but there are many commonalities
among them.

4.1. Side-by-side comparison
See Tables 1 & 2 for a comparison of activities and
artifacts By putting the methods side by side, we are

working to identify and understand this commonality
as well as the important differences. The rows of the
table are based on the activities and artifacts identified
in the general model of the previous section.

This comparison has been an iterative process of
producing a common model of design activities and
artifacts, seeing how well they relate to the methods,
and adjusting the models. We take a broad view of
architectural design activities and see that the methods
address interrelated activities centered on analysis, syn-
thesis, and evaluation.

The steps of ADD follow the sequence of analysis,
synthesis, and evaluation activities. Subsequent itera-
tions of the activities follow the decomposition of the
architecture – the order of which will vary (e.g., depth-
first, breadth-first) based on the business context, do-
main knowledge, or technology.

Global Analysis from S4V plays a large role in
analysis and in driving iterations through the activities.
Thus it spans architectural analysis, architectural syn-
thesis, the backlog, and describes how architectural
concerns, context, ASRs, and some backlog items
should be recorded. The Global Analysis artifacts, de-
sign decision table, and tables that record the relation-
ships among views support traceability from require-
ments to the code (at the file and module level).

4.2. Commonalities
Elements the methods have in common include:
 an emphasis on quality attribute requirements and the
need to aid the architect in focusing on the important
requirements that impact the architecture during
analysis,

 design elements organized into multiple views dur-
ing synthesis,

 and an iterative fine-grained evaluation activity (per-
formed internally after each synthesis result by the
architect) as distinct from course-grained evaluation
(architectural reviews performed at key stages in the
software development life-cycle).

4.3. Variations
There are also important variations between the meth-
ods:
 Intent – ADD was developed as a design approach
based on making a series of design decisions (aided
by the application of architectural tactics). Other
view-based approaches were initially centered on de-
sign artifacts, with their dependencies suggesting a
sequencing of activities. 4+1 embedded in RUP pro-
vides full process support. BAPO/CAFCR has been
especially developed to support the development of
product families.

Ideas

Context, Constraints

Evaluation results

Architectural
Assets

Architecturally
Significant

Requirements

Architecture

Backlog

Architectural
Evaluation

Architectural
Synthesis

Architectural
Analysis

Ideas

Context, Constraints

Evaluation results

Architectural
Assets

Architecturally
Significant

Requirements

Architecture

Backlog

Architectural
Evaluation

Architectural
Synthesis

Architectural
Analysis

Figure 2: Backlog

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5).
Pittsburgh, PA, November 6-9, 2005. Named one of the five best papers of the conference.

8

 Emphasis – RUP puts a strong emphasis on incre-
mentally building an evolutionary prototype, forcing
the designers to a more experimental style of archi-
tectural design. BAPO/CAFCR is putting a strong
emphasis on the scoping of the architecture and once
the scope of the architecture using a BAPO analysis
has been established, the focus is on ensuring the
consistency and the completeness of the CAFCR
views. ADD puts its emphasis on constructing the
architecture by applying architectural tactics (design
options for the architect that are influential in the
control of a quality attribute response).

 Driving forces – ADD is quality attribute scenario
focused; experience suggests that a handful of these
shape the architecture and all other requirements are
then mapped to this structure. This fact is also recog-
nized in ASC, which ties architecture design to archi-
tecturally significant requirements. ASR are broader
than quality attributes and may include key func-
tional requirements. RUP is mostly driven by risk
mitigation.

 Architectural Scope – ASC recognizes a hierarchy
of architectural scopes like product portfolio, product
family, a single product, and a product release. Each
architecture design project uses enclosing scope as
the context of the design.

 Process Scope – ADD provides a step for choosing
the architectural drivers but its scope is such that it
depends on more analysis types of activities from
other methods, such as global analysis from S4V.
However, S4V does not recommend or advocate
specific evaluation techniques. Thus ADD and S4V
complement each other in these respects.

 Description – Although four specific views are rec-
ommended, the view-related aspects of S4V are lim-
ited to the second part of arch synthesis. Thus other
views could be substituted or added while still using
all the other parts of S4V. The views used for archi-
tecture design in ASC are tied to architectural struc-
tures that are important for the specific system,
which in turn, are determined by the ASR. Thus ASC
offers a process to determine which views should be
used for architecture design of a specific system.
The views used in ADD are determined by the ASR,
though typically there is one for each of the three
kinds of viewtypes: module, component & connec-
tor, and allocation [6].

5. Related Work

We have found four main approaches to compar-
ing design methods. Some researchers compare the
methods by comparing their results or artifacts. Others
compare the activities done when following the meth-
ods. Each of these approaches breaks down further into

comparisons based on applying the methods to a par-
ticular example application, or comparing the methods
by classifying the artifacts or activities.

The first group compares the artifacts for an ex-
ample application. Bahill et al. [3] first provide a
“benchmark” application to be used for comparing
design methods. Then they provide a qualitative analy-
sis of the results of applying eleven design methods to
the benchmark application. Sharble & Cohen [30] use
complexity metrics to compare the class diagrams that
result from applying two different OO development
methods on a brewery application.

The next group also compares artifacts, but by
classifying them according to what they can model.
Wieringa [35] does this for a number of structured and
OO specification methods, and Hong et al. [17] do this
as part of their comparison of six OO analysis and de-
sign methods.

The third kind of comparison examines the activi-
ties undertaken when designing particular applications.
Kim & Lerch [20] measure the cognitive activities of
designers when using an OO design method versus a
functional decomposition approach. Each participant in
this study designed two variants of a Towers of Hanoi
application.

The approach we take in this paper falls into the
fourth category, characterizing and classifying activi-
ties then comparing them across methods. Song & Os-
terweil [31] use process modeling techniques to model
the activities and, to a lesser extent, the artifacts of the
methodologies. Although this approach is similar to
ours, the approaches differ in the development of the
comparison model. They decompose the activities of
each methodology, then classify and compare them.
Thus the classification and comparison is begun with
the low-level elements. In contrast we create a general
model where only one level of decomposition is done,
resulting in the three activities of architectural analysis,
synthesis, and evaluation and the corresponding arti-
facts. We then determine which elements of each
methodology map to these activities and artifacts, and
compare to what extent each methodology covers the
various aspects of the activities and artifacts.

Hong et al. [17] also compare activities by first
characterizing and classifying them. They repeatedly
decompose the activities of each method, then create a
“super-methodology” that is a union of all the finest
granularity of the subactivities. Each method is com-
pared to the super-methodology. Fichman & Kemerer
[10] take a similar approach, comparing methods using
the eleven analysis activities and ten design activities
that are the superset of the activities supported by
methods. Both of these approaches decompose the ac-
tivities to very specific tasks that are tightly related to
the artifacts produced by the method (e.g. Identify

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5).
Pittsburgh, PA, November 6-9, 2005. Named one of the five best papers of the conference.

9

classes, Identify inheritance relationships). We did not
want our general model to be restricted by the kinds of
artifacts our five methods produce (e.g. specific views
used by the method), so we did not decompose activi-
ties to the low level.

Dobrica & Niemela’s approach to comparing
methods is perhaps closest to ours [9]. However, rather
than comparing architectural design methods, they are
comparing methods for software architecture evalua-
tion. Thus the eight methods have a much narrower
scope, and in addition a number of them are variants of
each other. Like us they compare activities and work-
flow at a fairly coarse granularity, but they add a few
other dimensions for comparison, such as scope of
method, stakeholders involved, etc.

In [23] Kruchten shows that if software engineers
were to use the term “design” analogously to the way
other engineers use it, design would include “some
requirements activities and all coding and testing ac-
tivities.” In a similar spirit, our use of the term “archi-
tecture design” encompasses analysis and evaluation
activities. Architectural synthesis, the activity that goes
from the problem space to the solution space is what
others might equate with the term “architecture de-
sign.” In [11] Fowler discusses the importance of
analysis, or understanding the problem, in moving from
the problem space to the solution space. Roshandel et
al. [28] reinforce our conviction that evaluation is an
integral part of architecture design. They demonstrate
that the kinds of automated evaluation possible depend
on the architectural view described (where each of the
two views studied is represented in a different ADL).

Finally we note that our general model and the
methods it is derived from are for the architecture de-
sign of new systems, not for evolving or reconstructing
the architecture of existing systems. While parts of the
model may be relevant for architecture evolution, when
comparing our model to the Symphony architecture
reconstruction process [34] we see that the activities
and artifacts are not related at all. In both cases the
activities can be categorized into 1) understand the
problem, 2) solve it, and 3) evaluate the solution, but
the same can be said of nearly any problem-solving
activity.

6. Conclusion

In this paper we have analyzed a number of indus-
trially validated architectural design methods. Using a
general model for architectural design activity, we have
identified the common and variable ingredients of these
methods. Despite the different vocabulary used for the
individual methods they have a lot in common at the
conceptual level. The basic architecting activities, like
architectural analysis, architectural synthesis and archi-

tectural evaluation are present in all of the investigated
methods. The major variation can be observed in the
different details with respect to guidance and process
focus across the various methods. Here the concept of
backlog is crucial to relate the various activities.

For our general model many of the concepts we
use are already part of the IEEE 1471 [18] vocabulary:
views, architectural concerns, context, stakeholders,
etc. Our more process-oriented model introduces the
following concepts: backlog, analysis, synthesis and
evaluation.

An important part of our model is the inclusion of
analysis and evaluation activities as part of architecture
design. While architecture evaluation has been the fo-
cus of much prior work, the emphasis is typically on
identifying candidate architectures or evaluating the
completed architecture. There has been far less work
on incremental or ongoing evaluation, and on architec-
tural analysis. Our model reveals these to be important
research topics.

Our model also introduces the concept of a back-
log as the driving force behind the workflow. The
backlog is a much richer workflow concept than simply
noting that iteration is expected.

We hope that our increased understanding of the
commonalities and differences of the various ap-
proaches will contribute to future methods that com-
bine the strong points of the existing ones and provide
specific support for software architecture design in a
large variety of different contexts. As an example, two
of the authors looked at ways of combining ADD and
RUP 4+1 by modeling ADD as a RUP activity, and
found that they complement each other well [19]. ADD
fills a need within the RUP: it provides a step-by-step
approach for defining a candidate architecture. The
RUP fills a need in the ADD by placing it in a life-
cycle context; the RUP provides guidance on how to
proceed from the candidate architecture to an executa-
ble architecture, detailed design and implementation.

References

[1] P. America, H. Obbink, and E. Rommes, "Multi-View
Variation Modeling for Scenario Analysis," in Proceedings of
Fifth International Workshop on Product Family Engineering
(PFE-5), Sienna, Italy, 2003, Springer-Verlag, pp. 44-65.
[2] F. Bachmann, L. Bass, and M. Klein, Illuminating the
Fundamental Contributors to Software Architecture Quality,
CMU/SEI-2002-TR-025, Software Engineering Institute,
Carnegie Mellon University, 2002.
[3] A.T. Bahill, M. Alford, K. Bharathan, J.R. Clymer, D.L.
Dean, J. Duke, G. Hill, E.V. LaBudde, E.J. Taipale, and A.W.
Wymore, "The design-methods comparison project," IEEE
Transactions on Systems, Man and Cybernetics, vol. 28, no.
1, 1998, pp. 80-103.

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA5).
Pittsburgh, PA, November 6-9, 2005. Named one of the five best papers of the conference.

10

[4] L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, 2nd ed., Reading, MA: Addison-Wesley,
2003.
[5] J. Bosch, Design and Use of Software Architecture:
Adopting and Evolving a Product-Line Approach, Boston:
Addison-Wesley, 2000.
[6] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford, Documenting Software
Architectures: Views and Beyond, Boston: Addison-Wesley,
2002.
[7] P. Clements and L. Northrop, Software Product Lines:
Practice and Patterns, Boston: Addison-Wesley, 2002.
[8] D.M. Dikel, D. Kane, and J.R. Wilson, Software Archi-
tecture: Organizational Principles and Patterns, Upper Sad-
dle River, NJ: Prentice-Hall, 2001.
[9] L. Dobrica and E. Niemela, "A survey on software ar-
chitecture analysis methods," IEEE Transactions on Software
Engineering, vol. 28, no. 7, 2002, pp. 638-653.
[10] R.G. Fichman and C.F. Kemerer, "Object-oriented and
conventional analysis and design methodologies," IEEE
Computer, vol. 25, no. 10, 1992, pp. 22-39.
[11] M. Fowler, Analysis Patterns: Reusable Object Models,
Addison Wesley, 1997.
[12] J. Garland and R. Anthony, Large-Scale Software Archi-
tecture: A Practical Guide using UML, New York: John
Wiley & Sons, Inc., 2002.
[13] J.S. Gero, "Design prototypes: A knowledge representa-
tion scheme for design," AI Magazine, vol. 11, no. 4, 1990,
pp. 26-36.
[14] J.S. Gero and U. Kannengiesser, "The situated function–
behaviour–structure framework," Design Studies, vol. 25, no.
4, 2004, pp. 373-391.
[15] H. Gomaa, Designing Concurrent, Distributed and
Real-time Applications with UML, Boston: Addison-Wesley,
2000.
[16] C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture, Boston: Addison-Wesley, 2000.
[17] S. Hong, G. van den Goor, and S. Brinkkemper, "A
formal approach to the comparison of object-oriented analy-
sis anddesign methodologies," in Proceedings of Twenty-
Sixth Hawaii International Conference on System Sciences,
Wailea, HI, USA, 1993, pp. iv 689-698.
[18] IEEE, IEEE 1471:2000--Recommended practice for
architectural description of software intensive systems., Los
Alamitos, CA: IEEE, 2000.
[19] R. Kazman, P. Kruchten, R. Nord, and J. Tomayko,
Integrating Software Architecture-Centric Methods into the
Rational Unified Process, Technical report CMU/SEI-2004-
TR-011, Software Engineering Institute, 2004.
[20] J. Kim and F.J. Lerch, " Towards a model of cognitive
process in logical design: comparing object-oriented and
traditional functional decomposition software methodolo-
gies," in Proceedings of SIGCHI conference on human fac-
tors in computing systems, Monterey, California, United
States, 1992, ACM Press, pp. 489-498.

[21] P. Kruchten, "The 4+1 View Model of Architecture,"
IEEE Software, vol. 12, no. 6, 1995, pp. 45-50.
[22] P. Kruchten, The Rational Unified Process: An Intro-
duction, 3 ed., Boston: Addison-Wesley, 2003.
[23] P. Kruchten, "Casting Software Design in the Function-
Behavior-Structure (FBS) Framework," IEEE Software, vol.
22, no. 2, 2005, pp. 52-58.
[24] G. Muller, The Gaudi Project website, at
http://www.extra.research.philips.com/natlab/sysarch/index.h
tml, 2005.
[25] H. Obbink, P. Kruchten, W. Kozaczynski, R. Hilliard,
A. Ran, H. Postema, D. Lutz, R. Kazman, W. Tracz, and E.
Kahane, Report on Software Architecture Review and As-
sessment (SARA), Version 1.0, February 2002.
[26] H. Obbink, J.K. Müller, P. America, R. van Ommering,
G. Muller, W. van der Sterren, and J.G. Wijnstra, COPA: A
Component-Oriented Platform Architecting Method for
Families of Software-Intensive Electronic Products. Tutorial
for the First Software Product Line Conference, Denver,
Colorado, August 2000. 2000,
[27] A. Ran, "ARES Conceptual Framework for Software
Architecture," in M. Jazayeri, A. Ran, and F. van der Linden,
ed., Software Architecture for Product Families Principles
and Practice, Boston: Addison-Wesley, 2000, pp. 1-29.
[28] R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan,
and D. Zhang, "Understanding Tradeoffs among Different
Architectural Modeling Approaches," in Proceedings of 4th
Working IEEE/IFIP Conference on Software Architecture
(WICSA-04), Oslo, Norway, 2004, pp. 47-56.
[29] K. Schwaber and M. Beedle, Agile Software Develop-
ment with SCRUM, Upper Saddle River: Prentice-Hall, 2002.
[30] R.C. Sharble and S.S. Cohen, "The object-oriented
brewery: a comparison of two object-oriented development
methods," ACM SIGSOFT Software Engineering Notes, vol.
18, no. 2, 1993, pp. 60-73.
[31] X. Song and L.J. Osterweil, "Experience with an ap-
proach to comparing software design methodologies," IEEE
Transactions on Software Engineering, vol. 20, no. 5, 1994,
pp. 364-384.
[32] D. Soni, R. Nord, and C. Hofmeister, "Software Archi-
tecture in Industrial Applications," in Proceedings of 17th
International Conference on Software Engineering, 1995,
ACM Press, pp. 196-207.
[33] F. van der Linden, J. Bosch, E. Kamsteries, K. Känsälä,
and H. Obbink, "Software Product Family Evaluation," in
Proceedings of Software Product Lines, Third International
Conference, SPLC 2004, Boston, MA, 2004, Springer-
Verlag, pp. 110-129.
[34] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen,
and C. Riva, "Symphony: View-Driven Software Architec-
ture Reconstruction," in Proceedings of 4th Working
IEEE/IFIP Conference on Software Architecture (WICSA-
04), Oslo, Norway, 2004, IEEE, pp. 122-134.
[35] R. Wieringa, "A Survey of Structured and Object-
Oriented Software Specification Methods and Techniques,"
ACM Computing Surveys, vol. 30, no. 4, 1998, pp. 459-527.

